中国普外基础与临床杂志

中国普外基础与临床杂志

去乙酰化酶 1 在消化道肿瘤中的研究进展

查看全文

目的 总结去乙酰化酶 1( SIRT1)分子在消化道恶性肿瘤发生和发展过程中所起的重要作用。 方法 查阅近年来国内外关于消化道肿瘤发生发展过程中 SIRT1 分子作用的文献并作综述。 结果 SIRT1 分子通过与中长链非编码 RNA(LncRNA)、微小 RNA(microRNA)和自噬相关联,在食管癌、胃癌、结直肠癌、肝癌和胰腺癌中高表达,影响消化道肿瘤的发生和发展。 结论 SIRT1 分子的异常表达与消化道肿瘤的发生和发展密切相关。

Objective To summarize the important role of sirtuin type 1 (SIRT1) in the development of gastrointestinal tumors. Methods Domestic and international publications related to biological functions of SIRT1 and its role in gastrointestinal tumors in recent years were collected and reviewed. Results SIRT1 had a significant high expression in esophageal cancer, gastric cancer, colorectal cancer, liver cancer, and pancreatic cancer tissues, by associating with long noncoding RNA (LncRNA), microRNA, and autophagy. It affected the occurrence and development of gastrointestinal tumors. Conclusions Abnormal expression of SIRT1 is closely related to the occurrence and development of gastrointestinal tumors.

关键词: 去乙酰化酶 1; 消化道肿瘤; 综述

Key words: sirtuin type 1; gastrointestinal tumor; review

引用本文: 贾晨, 孙晨, 李福军, 吴德全. 去乙酰化酶 1 在消化道肿瘤中的研究进展. 中国普外基础与临床杂志, 2018, 25(4): 505-509. doi: 10.7507/1007-9424.201709007 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Cho EH, Dai Y. SIRT1 controls cell proliferation by regulating contact inhibition. Biochem Biophys Res Commun, 2016, 478(2): 868-872.
2. Holmes RS, Vaughan TL. Epidemiology and pathogenesis of esophageal cancer. Semin Radiat Oncol, 2007, 17(1): 2-9.
3. Meng X, Chen X, Lu P, et al. miR-202 promotes cell apoptosis in esophageal squamous cell carcinoma by targeting HSF2. Oncol Res, 2017, 25(2): 215-223.
4. He Z, Yi J, Jin L, et al. Overexpression of Sirtuin-1 is associated with poor clinical outcome in esophageal squamous cell carcinoma. Tumour Biol, 2016, 37(6): 7139-7148.
5. Ye Z, Fang J, Dai S, et al. MicroRNA-34a induces a senescence-like change via the down-regulation of SIRT1 and up-regulation of p53 protein in human esophageal squamous cancer cells with a wild-type p53 gene background. Cancer Lett, 2016, 370(2): 216-221.
6. Shen L, Shan YS, Hu HM, et al. Management of gastric cancer in Asia: resource-stratified guidelines. Lancet Oncol, 2013, 14(12): e535-e547.
7. Qiu G, Li X, Che X, et al. SIRT1 is a regulator of autophagy: Implications in gastric cancer progression and treatment. FEBS Lett, 2015, 589(16): 2034-2042.
8. Kim SY, Ko YS, Park J, et al. Forkhead transcription factor FOXO1 inhibits angiogenesis in gastric cancer in relation to SIRT1. Cancer Res Treat, 2016, 48(1): 345-354.
9. Li J, Dong G, Wang B, et al. miR-543 promotes gastric cancer cell proliferation by targeting SIRT1. Biochem Biophys Res Commun, 2016, 469(1): 15-21.
10. Wang J, Xue X, Hong H, et al. Upregulation of microRNA-524-5p enhances the cisplatin sensitivity of gastric cancer cells by modulating proliferation and metastasis via targeting SOX9. Oncotarget, 2017, 8(1): 574-582.
11. Su J, Wu S, Tang W, et al. Reduced SLC27A2 induces cisplatin resistance in lung cancer stem cells by negatively regulating Bmi1-ABCG2 signaling. MolCarcinog, 2016, 55(11): 1822-1832.
12. Huntly BJ, Gilliland DG. Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer, 2005, 5(4): 311-321.
13. Magee JA, Piskounova E, Morrison SJ. Cancer stem cells: impact, heterogeneity, and uncertainty. Cancer Cell, 2012, 21(3): 283-296.
14. Zhang L, Guo X, Zhang D, et al. Upregulated miR-132 in Lgr5+ gastric cancer stem cell-like cells contributes to cisplatin-resistance via SIRT1/CREB/ABCG2 signaling pathway. Mol Carcinog, 2017, 56(9): 2022-2034.
15. Azer SA. Overview of molecular pathways in inflammatory bowel disease associated with colorectal cancer development. Eur J Gastroenterol Hepatol, 2013, 25(3): 271-281.
16. Siegel R, Ma J, Zou Z, et al. Cancer statistics, 2014. CA Cancer J Clin, 2014, 64(1): 9-29.
17. Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017. CA Cancer J Clin, 2017, 67(3): 177-193.
18. Fu Z, Shrubsole MJ, Smalley WE, et al. Association of meat intake and meat-derived mutagen exposure with the risk of colorectal polyps by histologic type. Cancer Prev Res (Phila), 2011, 4(10): 1686-1697.
19. Piepoli A, Tavano F, Copetti M, et al. Mirna expression profiles identify drivers in colorectal and pancreatic cancers. PLoS One, 2012, 7(3): e33663.
20. Chueca E, Lanas A, Piazuelo E. Role of gastrin-peptides in Barrett’s and colorectal carcinogenesis. World J Gastroenterol, 2012, 18(45): 6560-6570.
21. Yu DF, Jiang SJ, Pan ZP, et al. Expression and clinical significance of Sirt1 in colorectal cancer. Oncol Lett, 2016, 11(2): 1167-1172.
22. Shen ZL, Wang B, Jiang KW, et al. Down regulation of miR-199b is associated with distant metastasis in colorectal cancer via activation of SIRT1 and inhibition of CREB/KISS1 signaling. Oncotarget, 2016, 7(23): 35092-35105.
23. Cheng F, Su L, Yao C, et al. SIRT1 promotes epithelial-mesenchymal transition and metastasis in colorectal cancer by regulating Fra-1 expression. Cancer Lett, 2016, 375(2): 274-283.
24. Carew JS, Nawrocki ST, Cleveland JL. Modulating autophagy for therapeutic benefit. Autophagy, 2007, 3(5): 464-467.
25. Song J, Qu Z, Guo X, et al. Hypoxia-induced autophagy contributes to the chemoresistance of hepatocellular carcinoma cells. Autophagy, 2009, 5(8): 1131-1144.
26. Xiong H, Ni Z, He J, et al. LncRNA HULC triggers autophagy via stabilizing Sirt1 and attenuates the chemosensitivity of HCC cells. Oncogene, 2017, 36(25): 3528-3540.
27. Ling S, Li J, Shan Q, et al. USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. MolOncol, 2017, 11(6): 682-695.
28. Jiang H, Zhang X, Tao Y, et al. Prognostic and clinicopathologic significance of SIRT1 expression in hepatocellular carcinoma. Oncotarget, 2016, 8(32): 52357-52365.
29. Tian Z, Jiang H, Liu Y, et al. MicroRNA-133b inhibits hepatocellular carcinoma cell progression by targeting Sirt1. Exp Cell Res, 2016, 343(2): 135-147.
30. Jiang G, Wen L, Zheng H, et al. miR-204-5p targeting SIRT1 regulates hepatocellular carcinoma progression. Cell Biochem Funct, 2016, 34(7): 505-510.
31. Hidalgo M. Pancreatic cancer. N Engl J Med, 2010, 362(17): 1605-1617.
32. Shi X, Liu R, Basolo F, et al. Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab, 2016, 101(1): 264-274.
33. Rahib L, Smith BD, Aizenberg R, et al. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res, 2014, 74(11): 2913-2921.
34. Jin J, Chu Z, Ma P, et al. SIRT1 promotes the proliferation and metastasis of human pancreatic cancer cells. Tumour Biol, 2017, 39(3): 1010428317691180.
35. Tian S, Guo X, Yu C, et al. miR-138-5p suppresses autophagy in pancreatic cancer by targeting SIRT1. Oncotarget, 2017, 8(7): 11071-11082.
36. Liu Y, Li X, Zhu S, et al. Ectopic expression of miR-494 inhibited the proliferation, invasion and chemoresistance of pancreatic cancer by regulating SIRT1 and c-Myc. Gene Ther, 2015, 22(9): 729-738.
37. Chini CC, Espindola-Netto JM, Mondal G, et al. SIRT1-activating compounds (STAC) negatively regulate pancreatic cancer cell growth and viability through a SIRT1 lysosomal-dependent pathway. Clin Cancer Res, 2016, 22(10): 2496-2507.
38. Kim JE, Chen J, Lou Z. DBC1 is a negative regulator of SIRT1. Nature, 2008, 451(7178): 583-586.
39. Fang Y, Nicholl MB. Sirtuin 1 in malignant transformation: friend or foe? Cancer Lett, 2011, 306(1): 10-14.
40. Liu T, Liu PY, Marshall GM. The critical role of the class Ⅲ histone deacetylase SIRT1 in cancer. Cancer Res, 2009, 69(5): 1702-1705.