中国普外基础与临床杂志

中国普外基础与临床杂志

CT 图像纹理分析鉴别肝上皮样血管内皮瘤与结肠癌肝转移瘤的初步研究

查看全文

目的 探讨采用 CT 图像纹理分析鉴别肝上皮样血管内皮瘤(HEHE)和结肠癌肝转移瘤的可行性。 方法 回顾性分析四川大学华西医院于 2012 年 7 月至 2016 年 8 月期间收治的经病理学检查证实的 9 例 HEHE(共计 19 个病灶)和 18 例结肠癌肝转移患者(共计 38 个病灶)的 CT 资料。 结果 利用 MaZda 软件中费希尔参数法(Fisher)+最小分类误差与最小平均相关系数法(PA)+相关信息测度法(MI)联合法自动选择出 30 个最佳纹理特征,在动脉期的频率分布为:共生矩阵 22 个,游程矩阵 1 个,灰度直方图 4 个,绝对梯度 1 个,自回归模型 2 个;在门静脉期的频率分布为:共生矩阵 18 个,游程矩阵 2 个,灰度直方图 7 个,绝对梯度 2 个,自回归模型 1 个。在动脉期,原始数据分析(RDA)/K 邻近分类(KNN)法、主成分分析(PCA)/KNN 法、线性判别分析(LDA)/KNN 法和非线性判别分析(NDA)/人工神经网络(ANN)法的错判率分别为 38.60%(22/57)、42.11%(24/57)、8.77%(5/57)及 7.02%(4/57);在门静脉期,RDA/KNN、PCA/KNN、LDA/KNN 及 NDA/ANN 法的错判率分别为 26.32%(15/57)、28.07%(16/57)、15.79%(9/57)及 10.53%(6/57)。动脉期和门静脉期 4 种方法的错判率比较差异均无统计学意义(P>0.05)。 结论 应用 CT 图像纹理分析鉴别 HEHE 和结肠癌肝转移瘤是可行的。

Objective To determine feasibility of texture analysis of CT images for the discrimination of hepatic epithelioid hemangioendothelioma (HEHE) and liver metastases of colon cancer. Methods CT images of 9 patients with 19 pathologically proved HEHEs and 18 patients with 38 liver metastases of colon cancer who received treatment in West China Hospital of Sichuan University from July 2012 to August 2016 were retrospectively analyzed. Results Thirty best texture parameters were automatically selected by the combination of Fisher coefficient (Fisher)+classification error probability combined with average correlation coefficients (PA)+mutual information (MI). The 30 texture parameters of arterial phase (AP) CT images were distributed in co-occurrence matrix (22 parameters), run-length matrix (1 parameter), histogram (4 parameters), gradient (1 parameter), and autoregressive model (2 parameters). The distribution of parameters in portal venous phase (PVP) were co-occurrence matrix (18 parameters), run-length matrix (2 parameters), histogram (7 parameters), gradient (2 parameters), and autoregressive model (1 parameter). In AP, the misclassification rates of raw data analysis (RDA)/K nearest neighbor classification (KNN), principal component analysis (PCA)/KNN, linear discriminant analysis (LDA)/KNN, and nonlinear discriminant analysis, and nonlinear discriminant analysis (NDA)/artificial neural network (ANN) was 38.60% (22/57), 42.11% (24/57), 8.77% (5/57), and 7.02% (4/57), respectively. In PVP, the misclassification rates of RDA/KNN, PCA/KNN, LDA/KNN, and NDA/ANN was 26.32% (15/57), 28.07% (16/57), 15.79% (9/57), and 10.53% (6/57), respectively. The misclassification rates of AP and PVP images had no statistical significance on the misclassification rates of RDA/KNN, PCA/KNN, LDA/KNN, and NDA/ANN between AP and PVP (P>0.05). Conclusion The texture analysis of CT images is feasible to identify HEHE and liver metastases of colon cancer.

关键词: CT 图像纹理分析; 肝上皮样血管内皮瘤; 结肠癌肝转移瘤; 鉴别诊断

Key words: texture analysis of CT image; hepatic epithelioid hemangioendothelioma; liver metastasis of colon cancer; differential diagnosis

引用本文: 刘露, 吴霜, 伍兵. CT 图像纹理分析鉴别肝上皮样血管内皮瘤与结肠癌肝转移瘤的初步研究. 中国普外基础与临床杂志, 2018, 25(4): 483-487. doi: 10.7507/1007-9424.201802007 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Makhlouf HR, Ishak KG, Goodman ZD. Epithelioid hemangioendothelioma of the liver: a clinicopathologic study of 137 cases. Cancer, 1999, 85(3): 562-582.
2. Demuynck F, Morvan J, Brochart C, et al. Hepatic epithelioid hemangioendothelioma: a rare liver tumor. J Radiol, 2009, 90(7-8 Pt 1): 845-848.
3. Matsushita M, Shimizu S, Nagasawa M, et al. Epithelioid hemangioendothelioma of the liver: imaging diagnosis of a rare hepatic tumor. Dig Surg, 2005, 22(6): 416-418.
4. Campione S, Cozzolino I, Mainenti P, et al. Hepatic epithelioidhemangioendothelioma: pitfalls in the diagnosis on fine needle cytology and " small biopsy” and review of the literature. Pathol Res Pract, 2015, 211(9): 702-705.
5. Ekfors TO, Joensuu K, Toivio I, et al. Fatal epithelioidhaemangioendothelioma presenting in the lung and liver. Virchows Arch A Pathol Anat Histopathol, 1986, 410(1): 9-16.
6. 梁晓, 张红梅, 叶枫, 等. 肝脏上皮样血管内皮细胞瘤的影像学和病理学特征. 中华肿瘤杂志, 2015, 37(4): 278-282.
7. Lubner MG, Smith AD, Sandrasegaran K, et al. CT Texture analysis: definitions, applications, biologic correlates, and challenges. Radiographics, 2017, 37(5): 1483-1503.
8. Castellano G, Bonilha L, Li LM, et al. Texture analysis of medical images. ClinRadiol, 2004, 59(12): 1061-1069.
9. 马向宏, 袁冠前, 徐志华, 等. 常规MRI图像纹理分析对颞叶癫痫海马硬化的诊断价值. 磁共振成像, 2017, 8(10): 732-736.
10. 王永芹, 黄子星, 袁放, 等. CT平扫图像纹理分析对肝癌与肝血管瘤鉴别诊断的初步研究. 中国普外基础与临床杂志, 2017, 22(2): 254-258.
11. 潘立阳. 原发性肝癌相关因素1∶2病例对照研究. 大连: 大连医科大学, 2008.
12. Szczypiński PM, Strzelecki M, Materka A, et al. MaZda-a software package for image texture analysis. Comput Methods Programs Biomed, 2009, 94(1): 66-76.
13. Collewet G, Strzelecki M, Mariette F. Influence of MRI acquisition protocols and image intensity normalization methods on texture classification. MagnReson Imaging, 2004, 22(1): 81-91.
14. Tourassi GD, Frederick ED, Markey MK, et al. Application of the mutual information criterion for feature selection in computer-aided diagnosis. Med Phys, 2001, 28(12): 2394-2402.
15. Yan L, Liu Z, Wang G, et al. Angiomyolipoma with minimal fat: differentiation from clear cell renal cell carcinoma and papillary renal cell carcinoma by texture analysis on CT images. AcadRadiol, 2015, 22(9): 1115-1121.
16. 黄燕琪, 马泽兰, 何兰, 等. 基于CT图像的纹理分析鉴别肝脏实性局灶性病变. 中国医学影像学杂志, 2016, 24(4): 289-292, 297.
17. Summers RM. Texture analysis in radiology: does the emperor have no clothes? AbdomRadiol (NY), 2017, 42(2): 342-345.
18. Mayerhoefer ME, Schima W, Trattnig S, et al. Texture-based classification of focal liver lesions on MRI at 3.0 Tesla: a feasibility study in cysts and hemangiomas. J MagnReson Imaging, 2010, 32(2): 352-359.
19. Miles KA, Ganeshan B, Rodriguez-Justo M, et al. Multifunctional imaging signature for V-KI-RAS2 Kirsten rat sarcoma viral oncogene homolog (KRAS) mutations in colorectal cancer. J Nucl Med, 2014, 55(3): 386-391.
20. Lubner MG, Stabo N, Lubner SJ, et al. CT textural analysis of hepatic metastatic colorectal cancer: pre-treatment tumor heterogeneity correlates with pathology and clinical outcomes. Abdom Imaging, 2015, 40(7): 2331-2337.
21. Ganeshan B, Goh V, Mandeville HC, et al. Non-small cell lung cancer: histopathologic correlates for texture parameters at CT. Radiology, 2013, 266(1): 326-336.
22. Otrock ZK, Al-Kutoubi A, Kattar MM, et al. Spontaneous complete regression of hepatic epithelioid haemangioendothelioma. Lancet Oncol, 2006, 7(5): 439-441.
23. 刘权, 彭卫军, 王坚. 肝上皮样血管内皮瘤影像学表现及征象分析. 肿瘤影像学, 2014, 23(1): 8-13.
24. Galletto Pregliasco A, Wendum D, Goumard C, et al. Hepatic epithelioid hemangioendothelioma. Clin Res Hepatol Gastroenterol, 2016, 40(2): 136-138.
25. 孙淑杰, 迮兴宇, 赵新颜. 肝上皮样血管内皮瘤文献复习及临床特点分析. 临床和实验医学杂志, 2012, 11(9): 654-656.
26. 石双任, 陈宏伟, 陆志华. 肝上皮样血管内皮细胞瘤的影像表现. 临床放射学杂志, 2011, 30(12): 1839-1842.
27. Hu HJ, Jin YW, Jing QY, et al. Hepatic epithelioid hemangioendothelioma: dilemma and challenges in the preoperative diagnosis. World J Gastroenterol, 2016, 22(41): 9247-9250.