中国普外基础与临床杂志

中国普外基础与临床杂志

长链非编码RNA与甲状腺癌发生发展关系的研究进展及其临床价值

查看全文

引用本文: 张浩, 孙威. 长链非编码RNA与甲状腺癌发生发展关系的研究进展及其临床价值. 中国普外基础与临床杂志, 2018, 25(10): 1161-1164. doi: 10.7507/1007-9424.201808107 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Fröhlich E, Wahl R. The current role of targeted therapies to induce radioiodine uptake in thyroid cancer. Cancer Treat Rev, 2014, 40(5): 665-674.
2. Ponting CP, Oliver PL, Reik W. Evolution and functions of long noncoding RNAs. Cell, 2009, 136(4): 629-641.
3. Klinge CM. Non-coding RNAs: long non-coding RNAs and microRNAs in endocrine-related cancers. Endocr Relat Cancer, 2018, 25(4): R259-R282.
4. Zhang R, Hardin H, Chen J, et al. Non-coding RNAs in thyroid cancer. Endocr Pathol, 2016, 27(1): 12-20.
5. Clemson CM, Hutchinson JN, Sara SA, et al. An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure of paraspeckles. Mol Cell, 2009, 33(6): 717-726.
6. Yu X, Li Z, Zheng H, et al. NEAT1: a novel cancer-related long non-coding RNA. Cell Prolif, 2017, 50(2): e12329.
7. Li JH, Zhang SQ, Qiu XG, et al. Long non-coding RNA NEAT1 promotes malignant progression of thyroid carcinoma by regulating miRNA-214. Int J Oncol, 2017, 50(2): 708-716.
8. Zhang H, Cai Y, Zheng L, et al. Long noncoding RNA NEAT1 regulate papillary thyroid cancer progression by modulating miR-129-5p/KLK7 expression. J Cell Physiol, 2018, 233(10): 6638-6648.
9. Sun W, Lan X, Zhang H, et al. NEAT1_2 functions as a competing endogenous RNA to regulate ATAD2 expression by sponging microRNA-106b-5p in papillary thyroid cancer. Cell Death Dis, 2018, 9(3): 380.
10. Zhang R, Hardin H, Huang W, et al. MALAT1 long non-coding RNA expression in thyroid tissues: analysis by in situ hybridization and real-time PCR. Endocr Pathol, 2017, 28(1): 7-12.
11. Chu YH, Hardin H, Schneider DF, et al. MicroRNA-21 and long non-coding RNA MALAT1 are overexpressed markers in medullary thyroid carcinoma. Exp Mol Pathol, 2017, 103(2): 229-236.
12. Huang JK, Ma L, Song WH, et al. MALAT1 promotes the proliferation and invasion of thyroid cancer cells via regulating the expression of IQGAP1. Biomed Pharmacother, 2016, 83: 1-7.
13. Huang JK, Ma L, Song WH, et al. LncRNA-MALAT1 promotes angiogenesis of thyroid cancer by modulating tumor-associated macrophage FGF2 protein secretion. J Cell Biochem, 2017, 118(12): 4821-4830.
14. Flockhart RJ, Webster DE, Qu K, et al. BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. Genome Res, 2012, 22(6): 1006-1014.
15. Xing M. Molecular pathogenesis and mechanisms of thyroid cancer. Nat Rev Cancer, 2013, 13(3): 184-199.
16. Wang Y, Guo Q, Zhao Y, et al. BRAF-activated long non-coding RNA contributes to cell proliferation and activates autophagy in papillary thyroid carcinoma. Oncol Lett, 2014, 8(5): 1947-1952.
17. Wang Y, Gu J, Lin X, et al. lncRNA BANCR promotes EMT in PTC via the Raf/MEK/ERK signaling pathway. Oncol Lett, 2018, 15(4): 5865-5870.
18. Zheng H, Wang M, Jiang L, et al. BRAF-activated long noncoding RNA modulates papillary thyroid carcinoma cell proliferation through regulating thyroid stimulating hormone receptor. Cancer Res Treat, 2016, 48(2): 698-707.
19. Liao T, Qu N, Shi RL, et al. BRAF-activated LncRNA functions as a tumor suppressor in papillary thyroid cancer. Oncotarget, 2017, 8(1): 238-247.
20. Liu L, Yang J, Zhu X, et al. Long noncoding RNA H19 competitively binds miR-17-5p to regulate YES1 expression in thyroid cancer. FEBS J, 2016, 283(12): 2326-2339.
21. Liu N, Zhou Q, Qi YH, et al. Effects of long non-coding RNA H19 and microRNA let7a expression on thyroid cancer prognosis. Exp Mol Pathol, 2017, 103(1): 71-77.
22. Wang P, Liu G, Xu W, et al. Long noncoding RNA H19 inhibits cell viability, migration, and invasion via downregulation of IRS-1 in thyroid cancer cells. Technol Cancer Res Treat, 2017, 16(6): 1102-1112.
23. Lan X, Sun W, Dong W, et al. Downregulation of long noncoding RNA H19 contributes to the proliferation and migration of papillary thyroid carcinoma. Gene, 2018, 646: 98-105.
24. Pan W, Zhou L, Ge M, et al. Whole exome sequencing identifies lncRNA GAS8-AS1 and LPAR4 as novel papillary thyroid carcinoma driver alternations. Hum Mol Genet, 2016, 25(9): 1875-1884.
25. Zhang D, Liu X, Wei B, et al. Plasma lncRNA GAS8-AS1 as a potential biomarker of papillary thyroid carcinoma in Chinese patients. Int J Endocrinol, 2017, 2017: 2645904.
26. Qin Y, Sun W, Zhang H, et al. LncRNA GAS8-AS1 inhibits cell proliferation through ATG5-mediated autophagy in papillary thyroid cancer. Endocrine, 2018, 59(3): 555-564.
27. Jendrzejewski J, He H, Radomska HS, et al. The polymorphism rs944289 predisposes to papillary thyroid carcinoma through a large intergenic noncoding RNA gene of tumor suppressor type. Proc Natl Acad Sci U S A, 2012, 109(22): 8646-8651.
28. Jendrzejewski J, Thomas A, Liyanarachchi S, et al. PTCSC3 is involved in papillary thyroid carcinoma development by modulating S100A4 gene expression. J Clin Endocrinol Metab, 2015, 100(10): E1370-E1377.
29. Wang X, Lu X, Geng Z, et al. LncRNA PTCSC3/miR-574-5p governs cell proliferation and migration of papillary thyroid carcinoma via Wnt/β-catenin signaling. J Cell Biochem, 2017, 118(12): 4745-4752.
30. Wang XM, Liu Y, Fan YX, et al. LncRNA PTCSC3 affects drug resistance of anaplastic thyroid cancer through STAT3/INO80 pathway. Cancer Biol Ther, 2018, 19(7): 590-597.
31. Lan X, Zhang H, Wang Z, et al. Genome-wide analysis of long noncoding RNA expression profile in papillary thyroid carcinoma. Gene, 2015, 569(1): 109-117.
32. Lan X, Sun W, Zhang P, et al. Downregulation of long noncoding RNA NONHSAT037832 in papillary thyroid carcinoma and its clinical significance. Tumour Biol, 2016, 37(5): 6117-6123.
33. Sun W, Lan X, Wang Z, et al. Overexpression of long non-coding RNA NR_036575.1 contributes to the proliferation and migration of papillary thyroid cancer. Med Oncol, 2016, 33(9): 102.
34. Qiu ZL, Shen CT, Sun ZK, et al. Circulating long non-coding RNAs act as biomarkers for predicting 131I uptake and mortality in papillary thyroid cancer patients with lung metastases. Cell Physiol Biochem, 2016, 40(6): 1377-1390.
35. Wang X, Zhang Q, Cai Z, et al. Identification of novel diagnostic biomarkers for thyroid carcinoma. Oncotarget, 2017, 8(67): 111551-111566.
36. Xia S, Wang C, Ni X, et al. NONHSAT076754 aids ultrasonography in predicting lymph node metastasis and promotes migration and invasion of papillary thyroid cancer cells. Oncotarget, 2017, 8(2): 2293-2306.
37. Liao D, Lv G, Wang T, et al. Prognostic value of long non-coding RNA BLACAT1 in patients with papillary thyroid carcinoma. Cancer Cell Int, 2018, 18: 47.
38. Ma B, Liao T, Wen D, et al. Long intergenic non-coding RNA 271 is predictive of a poorer prognosis of papillary thyroid cancer. Sci Rep, 2016, 6: 36973.
39. Luo YH, Liang L, He RQ, et al. RNA-sequencing investigation identifies an effective risk score generated by three novel lncRNAs for the survival of papillary thyroid cancer patients. Oncotarget, 2017, 8(43): 74139-74158.
40. Li Q, Li H, Zhang L, et al. Identification of novel long non-coding RNA biomarkers for prognosis prediction of papillary thyroid cancer. Oncotarget, 2017, 8(28): 46136-46144.
41. Guo LJ, Zhang S, Gao B, et al. Low expression of long non-coding RNA GAS5 is associated with poor prognosis of patients with thyroid cancer. Exp Mol Pathol, 2017, 102(3): 500-504.
42. Zhou H, Sun Z, Li S, et al. LncRNA SPRY4-IT was concerned with the poor prognosis and contributed to the progression of thyroid cancer. Cancer Gene Ther, 2018, 25(1-2): 39-46.
43. Xiong X, Zhu H, Chen X. Low expression of long noncoding RNA CASC2 indicates a poor prognosis and promotes tumorigenesis in thyroid carcinoma. Biomed Pharmacother, 2017, 93: 391-397.