中国普外基础与临床杂志

中国普外基础与临床杂志

甲状腺癌动物模型建立研究的现状与展望

查看全文

引用本文: 胡以国, 罗晗, 朱精强. 甲状腺癌动物模型建立研究的现状与展望. 中国普外基础与临床杂志, 2018, 25(10): 1153-1156. doi: 10.7507/1007-9424.201809006 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Chen W, Sun K, Zheng R, et al. Cancer incidence and mortality in China, 2014. Chin J Cancer Res, 2018, 30(1): 1-12.
2. Smallridge RC, Marlow LA, Copland JA. Anaplastic thyroid cancer: molecular pathogenesis and emerging therapies. Endocr Relat Cancer, 2009, 16(1): 17-44.
3. Nagaiah G, Hossain A, Mooney CJ, et al. Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment. J Oncol, 2011, 2011: 542358.
4. Charles RP. Overview of genetically engineered mouse models of papillary and anaplastic thyroid cancers: enabling translational biology for patient care improvement. Curr Protoc Pharmacol, 2015, 69: 14.
5. Rusinek D, Krajewska J, Jarząb M. Mouse models of papillary thyroid carcinoma-short review. Endokrynol Pol, 2016, 67(2): 212-223.
6. Raman P, Koenig RJ. Pax-8-PPAR-γ fusion protein in thyroid carcinoma. Nat Rev Endocrinol, 2014, 10(10): 616-623.
7. Knostman KA, Jhiang SM, Capen CC. Genetic alterations in thyroid cancer: the role of mouse models. Vet Pathol, 2007, 44(1): 1-14.
8. Kim CS, Zhu X. Lessons from mouse models of thyroid cancer. Thyroid, 2009, 19(12): 1317-1331.
9. Russo MA, Antico Arciuch VG, Di Cristofano A. Mouse models of follicular and papillary thyroid cancer progression. Front Endocrinol (Lausanne), 2012, 2: 119.
10. Champa D, Di Cristofano A. Modeling anaplastic thyroid carcinoma in the mouse. Horm Cancer, 2015, 6(1): 37-44.
11. Kirschner LS, Qamri Z, Kari S, et al. Mouse models of thyroid cancer: a 2015 update. Mol Cell Endocrinol, 2016, 421: 18-27.
12. Giordano TJ, Haugen BR, Sherman SI, et al. Pioglitazone therapy of PAX8-PPARγ fusion protein thyroid carcinoma. J Clin Endocrinol Metab, 2018, 103(4): 1277-1281.
13. Hu MI, Vassilopoulou-Sellin R, Lustig R, et al. Thyroid and parathyroid cancers//Pazdur R, Wagman LD, Camphausen KA, et al. Cancer management: a multidisciplinary approach. 11 ed. London: CMPMedica, 2008: 237-252.
14. Baloch ZW, LiVolsi VA. Prognostic factors in well-differentiated follicular-derived carcinoma and medullary thyroid carcinoma. Thyroid, 2001, 11(7): 637-645.
15. Jhiang SM, Cho JY, Furminger TL, et al. Thyroid carcinomas in RET/PTC transgenic mice. Recent Results Cancer Res, 1998, 154: 265-270.
16. Landa I, Ibrahimpasic T, Boucai L, et al. Genomic and transcriptomic hallmarks of poorly differentiated and anaplastic thyroid cancers. J Clin Invest, 2016, 126(3): 1052-1066.
17. Cancer Genome Atlas Research Network. Integrated genomic characterization of papillary thyroid carcinoma. Cell, 2014, 159(3): 676-690.
18. Nikiforova MN, Lynch RA, Biddinger PW, et al. RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence for distinct molecular pathways in thyroid follicular carcinoma. J Clin Endocrinol Metab, 2003, 88(5): 2318-2326.
19. Boos LA, Dettmer M, Schmitt A, et al. Diagnostic and prognostic implications of the PAX8-PPARγ translocation in thyroid carcinomas-a TMA-based study of 226 cases. Histopathology, 2013, 63(2): 234-241.
20. French CA, Alexander EK, Cibas ES, et al. Genetic and biological subgroups of low-stage follicular thyroid cancer. Am J Pathol, 2003, 162(4): 1053-1060.
21. Dobson ME, Diallo-Krou E, Grachtchouk V, et al. Pioglitazone induces a proadipogenic antitumor response in mice with PAX8-PPARgamma fusion protein thyroid carcinoma. Endocrinology, 2011, 152(11): 4455-4465.
22. Kim CS, Vasko VV, Kato Y, et al. AKT activation promotes metastasis in a mouse model of follicular thyroid carcinoma. Endocrinology, 2005, 146(10): 4456-4463.
23. Nikiforov YE, Nikiforova MN. Molecular genetics and diagnosis of thyroid cancer. Nat Rev Endocrinol, 2011, 7(10): 569-580.
24. Knauf JA, Ma X, Smith EP, et al. Targeted expression of BRAFV600E in thyroid cells of transgenic mice results in papillary thyroid cancers that undergo dedifferentiation. Cancer Res, 2005, 65(10): 4238-4245.
25. Sun XS, Sun SR, Guevara N, et al. Chemoradiation in anaplastic thyroid carcinomas. Crit Rev Oncol Hematol, 2013, 86(3): 290-301.
26. McFadden DG, Vernon A, Santiago PM, et al. p53 constrains progression to anaplastic thyroid carcinoma in a Braf-mutant mouse model of papillary thyroid cancer. Proc Natl Acad Sci U S A, 2014, 111(16): E1600-E1609.
27. Russell JP, Powell DJ, Cunnane M, et al. The TRK-T1 fusion protein induces neoplastic transformation of thyroid epithelium. Oncogene, 2000, 19(50): 5729-5735.
28. Fedele M, Palmieri D, Chiappetta G, et al. Impairment of the p27kip1 function enhances thyroid carcinogenesis in TRK-T1 transgenic mice. Endocr Relat Cancer, 2009, 16(2): 483-490.
29. Puzianowska-Kuznicka M, Krystyniak A, Madej A, et al. Functionally impaired TR mutants are present in thyroid papillary cancer. J Clin Endocrinol Metab, 2002, 87(3): 1120-1128.
30. Arrington AK, Heinrich EL, Lee W, et al. Prognostic and predictive roles of KRAS mutation in colorectal cancer. Int J Mol Sci, 2012, 13(10): 12153-12168.
31. Kaneshige M, Kaneshige K, Zhu X, et al. Mice with a targeted mutation in the thyroid hormone beta receptor gene exhibit impaired growth and resistance to thyroid hormone. Proc Natl Acad Sci U S A, 2000, 97(24): 13209-13214.
32. Zhu X, Zhao L, Park JW, et al. Synergistic signaling of KRAS and thyroid hormone receptor β mutants promotes undifferentiated thyroid cancer through MYC up-regulation. Neoplasia, 2014, 16(9): 757-769.
33. Hu Y, Song W, Cirstea D, et al. CSNK1α1 mediates malignant plasma cell survival. Leukemia, 2015, 29(2): 474-482.
34. Xin L, Ide H, Kim Y, et al. In vivo regeneration of murine prostate from dissociated cell populations of postnatal epithelia and urogenital sinus mesenchyme. Proc Natl Acad Sci U S A, 2003, 100 Suppl 1: 11896-11903.
35. Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci U S A, 2005, 102(19): 6942-6947.