中国普外基础与临床杂志

中国普外基础与临床杂志

体液环状 RNA 用于疾病诊断的研究进展

查看全文

目的总结体液中环状 RNA 在疾病诊断中作用的研究进展。方法通过阅读国内外关于体液环状 RNA 在疾病诊断方面的相关文献,归纳总结其研究进展。结果环状 RNA 作为内源性环状 RNA 分子,因其结构稳定、序列保守、功能多样、组织细胞特异性等特点,被发现与多种疾病相关。近来研究发现,环状 RNA 可被分泌至外周血、唾液、尿液、胃液、精浆等体液中,且可稳定存在,并与心血管疾病、神经系统疾病、自身免疫性疾病、各类恶性肿瘤、代谢性疾病等多种疾病相关,具有作为疾病非侵入性检测生物标志物之重要潜能。结论目前研究发现,体液环状 RNA 与多种临床疾病的诊断相关,因此对体液环状 RNA 与疾病诊断关系的深入研究有助于开发临床疾病非侵入性诊断标志物,对于疾病的非侵入性诊断具有重要意义。

ObjectiveTo summarize the research progress in the study of the diagnostic function of humoral circular RNAs in human diseases.MethodsThe research progress was summarized by reading relevant literatures on the diagnostic function of humoral circular RNAs in human disease at home and abroad.ResultsAs endogenous circular RNA molecules, circular RNAs were found to be related to a variety of diseases due to their stable structures, conserved sequences, diverse functions, and tissue cell specificity. Recent studies had found that circular RNAs could be secreted into body fluids, such as blood, saliva, urine, gastric juice, seminal plasma, and so on. They could also exist in body fluids stably. In addition, circular RNAs were found that was related to the diagnosis of various diseases, including cardiovascular diseases, nervous system diseases, autoimmune diseases, various carcinomas and metabolic diseases, and so on. As a consequence, circular RNAs might be important biomarkers for non-invasive detection of human diseases.ConclusionsRecent researches have found that circular RNA was related to the diagnosis of various diseases. Therefore, the in-depth study of the relationship between humoral circular RNAs and the diagnosis of diseases is conducive to the development of non-invasive diagnostic markers of clinical diseases, which is of great significance for the non-invasive diagnosis of diseases.

关键词: 环状 RNA; 体液; 疾病诊断; 生物标志物; 综述

Key words: circular RNA; body fluid; diagnosis of disease; biomarker; review

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. Lasda E, Parker R. Circular RNAs: diversity of form and function. RNA, 2014, 20(12): 1829-1842.
2. Zhang Z, Xie Q, He D, et al. Circular RNA: new star, new hope in cancer. BMC Cancer, 2018, 18(1): 834.
3. Zhou MY, Yang JM, Xiong XD. The emerging landscape of circular RNA in cardiovascular diseases. J Mol Cell Cardiol, 2018, 122: 134-139.
4. Lukiw WJ. Circular RNA (circRNA) in Alzheimer’s disease (AD). Front Genet, 2013, 4: 307.
5. Zhou ZB, Du D, Huang GX, et al. Circular RNA Atp9b, a competing endogenous RNA, regulates the progression of osteoarthritis by targeting miR-138-5p. Gene, 2018, 646: 203-209.
6. Cardamone G, Paraboschi EM, Rimoldi V, et al. The characterization of GSDMB splicing and backsplicing profiles identifies novel isoforms and a circular RNA that are dysregulated in multiple sclerosis. Int J Mol Sci, 2017, 18(3): E576.
7. Zheng F, Yu X, Huang J, et al. Circular RNA expression profiles of peripheral blood mononuclear cells in rheumatoid arthritis patients, based on microarray chip technology. Mol Med Rep, 2017, 16(6): 8029-8036.
8. Li H, Li K, Lai W, et al. Comprehensive circular RNA profiles in plasma reveals that circular RNAs can be used as novel biomarkers for systemic lupus erythematosus. Clin Chim Acta, 2018, 480: 17-25.
9. Dou Y, Cha DJ, Franklin JL, et al. Circular RNAs are down-regulated in KRAS mutant colon cancer cells and can be transferred to exosomes. Sci Rep, 2016, 6: 37982.
10. Memczak S, Papavasileiou P, Peters O, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One, 2015, 10(10): e0141214.
11. Cocquerelle C, Mascrez B, Hétuin D, et al. Mis-splicing yields circular RNA molecules. FASEB J, 1993, 7(1): 155-160.
12. Jeck WR, Sorrentino JA, Wang K, et al. Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA, 2013, 19(2): 141-157.
13. Li F, Zhang L, Li W, et al. Circular RNA ITCH has inhibitory effect on ESCC by suppressing the Wnt/β-catenin pathway. Oncotarget, 2015, 6(8): 6001-6013.
14. Li Z, Huang C, Bao C, et al. Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol, 2015, 22(3): 256-264.
15. Jeck WR, Sharpless NE. Detecting and characterizing circular RNAs. Nat Biotechnol, 2014, 32(5): 453-461.
16. Memczak S, Jens M, Elefsinioti A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature, 2013, 495(7441): 333-338.
17. Hsu MT, Coca-Prados M. Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature, 1979, 280(5720): 339-340.
18. Arnberg AC, Van Ommen GJ, Grivell LA, et al. Some yeast mitochondrial RNAs are circular. Cell, 1980, 19(2): 313-319.
19. Clépet C, Schafer AJ, Sinclair AH, et al. The human SRY transcript. Hum Mol Genet, 1993, 2(12): 2007-2012.
20. Rybak-Wolf A, Stottmeister C, Glažar P, et al. Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell, 2015, 58(5): 870-885.
21. Laine RA. A calculation of all possible oligosaccharide isomers both branched and linear yields 1.05 × 10(12) structures for a reducing hexasaccharide: the Isomer Barrier to development of single-method saccharide sequencing or synthesis systems. Glycobiology, 1994, 4(6): 759-767.
22. Hansen TB, Jensen TI, Clausen BH, et al. Natural RNA circles function as efficient microRNA sponges. Nature, 2013, 495(7441): 384-388.
23. Hansen TB, Kjems J, Damgaard CK. Circular RNA and miR-7 in cancer. Cancer Res, 2013, 73(18): 5609-5612.
24. Chen I, Chen CY, Chuang TJ. Biogenesis, identification, and function of exonic circular RNAs. Wiley Interdiscip Rev RNA, 2015, 6(5): 563-579.
25. Pamudurti NR, Bartok O, Jens M, et al. Translation of circRNAs. Mol Cell, 2017, 66(1): 9-21.
26. Kos A, Dijkema R, Arnberg AC, et al. The hepatitis delta (delta) virus possesses a circular RNA. Nature, 1986, 323(6088): 558-560.
27. Chen S, Li T, Zhao Q, et al. Using circular RNA hsa_circ_0000190 as a new biomarker in the diagnosis of gastric cancer. Clin Chim Acta, 2017, 466: 167-171.
28. Li P, Chen S, Chen H, et al. Using circular RNA as a novel type of biomarker in the screening of gastric cancer. Clin Chim Acta, 2015, 444: 132-136.
29. Zhao Q, Chen S, Li T, et al. Clinical values of circular RNA 0000181 in the screening of gastric cancer. J Clin Lab Anal, 2018, 32(4): e22333.
30. Huang M, He YR, Liang LC, et al. Circular RNA hsa_circ_0000745 may serve as a diagnostic marker for gastric cancer. World J Gastroenterol, 2017, 23(34): 6330-6338.
31. Sun H, Tang W, Rong D, et al. Hsa_circ_0000520, a potential new circular RNA biomarker, is involved in gastric carcinoma. Cancer Biomark, 2018, 21(2): 299-306.
32. Lu R, Shao Y, Ye G, et al. Low expression of hsa_circ_0006633 in human gastric cancer and its clinical significances. Tumour Biol, 2017, 39(6): 1010428317704175.
33. Zhang X, Zhou H, Jing W, et al. The circular RNA hsa_circ_0001445 regulates the proliferation and migration of hepatocellular carcinoma and may serve as a diagnostic biomarker. Dis Markers, 2018, 2018: 3073467.
34. Li J, Li Z, Jiang P, et al. Circular RNA IARS (circ-IARS) secreted by pancreatic cancer cells and located within exosomes regulates endothelial monolayer permeability to promote tumor metastasis. J Exp Clin Cancer Res, 2018, 37(1): 177.
35. Yang F, Liu DY, Guo JT, et al. Circular RNA circ-LDLRAD3 as a biomarker in diagnosis of pancreatic cancer. World J Gastroenterol, 2017, 23(47): 8345-8354.
36. Shao F, Huang M, Meng F, et al. Circular RNA signature predicts gemcitabine resistance of pancreatic ductal adenocarcinoma. Front Pharmacol, 2018, 9: 584.
37. Yin WB, Yan MG, Fang X, et al. Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta, 2018, 487: 363-368.
38. Zhu X, Wang X, Wei S, et al. hsa_circ_0013958: a circular RNA and potential novel biomarker for lung adenocarcinoma. FEBS J, 2017, 284(14): 2170-2182.
39. Hang D, Zhou J, Qin N, et al. A novel plasma circular RNA circFARSA is a potential biomarker for non-small cell lung cancer. Cancer Med, 2018, 7(6): 2783-2791.
40. Xu H, Gong Z, Shen Y, et al. Circular RNA expression in extracellular vesicles isolated from serum of patients with endometrial cancer. Epigenomics, 2018, 10(2): 187-197.
41. Zhao Z, Li X, Gao C, et al. Peripheral blood circular RNA hsa_circ_0124644 can be used as a diagnostic biomarker of coronary artery disease. Sci Rep, 2017, 7: 39918.
42. Deng YY, Zhang W, She J, et al. GW27-e1167 circular RNA related to PPARγ function as ceRNA of microRNA in human acute myocardial infarction. J Am Coll Cardiol, 2016, 268(16, Supplement): C51-C52.
43. Salgado-Somoza A, Zhang L, Vausort M, et al. The circular RNA MICRA for risk stratification after myocardial infarction. Int J Cardiol Heart Vasc, 2017, 17: 33-36.
44. Bao X, Zheng S, Mao S, et al. A potential risk factor of essential hypertension in case-control study: circular RNA hsa_circ_0037911. Biochem Biophys Res Commun, 2018, 498(4): 789-794.
45. Wu N, Jin L, Cai J. Profiling and bioinformatics analyses reveal differential circular RNA expression in hypertensive patients. Clin Exp Hypertens, 2017, 39(5): 454-459.
46. Zhao M, Gao F, Zhang D, et al. Altered expression of circular RNAs in Moyamoya disease. J Neurol Sci, 2017, 381: 25-31.
47. Han B, Zhang Y, Zhang Y, et al. Novel insight into circular RNA HECTD1 in astrocyte activation via autophagy by targeting MIR142-TIPARP: implications for cerebral ischemic stroke. Autophagy, 2018, 14(7): 1164-1184.
48. Zhang MY, Wang JB, Zhu ZW, et al. Differentially expressed circular RNAs in systemic lupus erythematosus and their clinical significance. Biomed Pharmacother, 2018, 107: 1720-1727.
49. Zhang C, Huang J, Chen Y, et al. Low expression and clinical value of hsa_circ_0049224 and has_circ_0049220 in systemic lupus erythematous patients. Med Sci Monit, 2018, 24: 1930-1935.
50. Iparraguirre L, Muñoz-Culla M, Prada-Luengo I, et al. Circular RNA profiling reveals that circular RNAs from ANXA2 can be used as new biomarkers for multiple sclerosis. Hum Mol Genet, 2017, 26(18): 3564-3572.
51. Ouyang Q, Wu J, Jiang Z, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from rheumatoid arthritis patients. Cell Physiol Biochem, 2017, 42(2): 651-659.
52. Luo Q, Zhang L, Li X, et al. Identification of circular RNAs hsa_circ_0044235 in peripheral blood as novel biomarkers for rheumatoid arthritis. Clin Exp Immunol, 2018, 194(1): 118-124.
53. Zheng J, Li Z, Wang T, et al. Microarray expression profile of circular RNAs in plasma from primary biliary cholangitis patients. Cell Physiol Biochem, 2017, 44(4): 1271-1281.
54. Zhao Z, Li X, Jian D, et al. Hsa_circ_0054633 in peripheral blood can be used as a diagnostic biomarker of pre-diabetes and type 2 diabetes mellitus. Acta Diabetol, 2017, 54(3): 237-245.
55. Li X, Zhao Z, Jian D, et al. Hsa-circRNA11783-2 in peripheral blood is correlated with coronary artery disease and type 2 diabetes mellitus. Diab Vasc Dis Res, 2017, 14(6): 510-515.
56. Zhang SJ, Chen X, Li CP, et al. Identification and characterization of circular RNAs as a new class of putative biomarkers in diabetes retinopathy. Invest Ophthalmol Vis Sci, 2017, 58(14): 6500-6509.
57. Gu Y, Ke G, Wang L, et al. Altered expression profile of circular RNAs in the serum of patients with diabetic retinopathy revealed by microarray. Ophthalmic Res, 2017, 58(3): 176-184.
58. Fang Y, Wang X, Li W, et al. Screening of circular RNAs and validation of circANKRD36 associated with inflammation in patients with type 2 diabetes mellitus. Int J Mol Med, 2018, 42(4): 1865-1874.
59. Katon W. Depression and diabetes: unhealthy bedfellows. Depress Anxiety, 2010, 27(4): 323-326.
60. Danna SM, Graham E, Burns RJ, et al. Association between depressive symptoms and cognitive function in persons with diabetes mellitus: a systematic review. PLoS One, 2016, 11(8): e0160809.
61. Avci D, Kelleci M. Alexithymia in patients with type 2 diabetes mellitus: the role of anxiety, depression, and glycemic control. Patient Prefer Adherence, 2016, 10: 1271-1277.
62. Jiang G, Ma Y, An T, et al. Relationships of circular RNA with diabetes and depression. Sci Rep, 2017, 7(1): 7285.
63. Huang ZK, Yao FY, Xu JQ, et al. Microarray expression profile of circular RNAs in peripheral blood mononuclear cells from active tuberculosis patients. Cell Physiol Biochem, 2018, 45(3): 1230-1240.
64. Qian Z, Liu H, Li M, et al. Potential diagnostic power of blood circular RNA expression in active pulmonary tuberculosis. EBioMedicine, 2018, 27: 18-26.
65. Zhang X, Zhu M, Yang R, et al. Identification and comparison of novel circular RNAs with associated co-expression and competing endogenous RNA networks in pulmonary tuberculosis. Oncotarget, 2017, 8(69): 113571-113582.
66. Jiang M, Lash GE, Zhao X, et al. CircRNA-0004904, circRNA-0001855, and PAPP-A: potential novel biomarkers for the prediction of preeclampsia. Cell Physiol Biochem, 2018, 46(6): 2576-2586.
67. Liu J, Kong F, Lou S, et al. Global identification of circular RNAs in chronic myeloid leukemia reveals hsa_circ_0080145 regulates cell proliferation by sponging miR-29b. Biochem Biophys Res Commun, 2018, 504(4): 660-665.
68. Zhao SY, Wang J, Ouyang SB, et al. Salivary circular RNAs hsa_Circ_0001874 and hsa_Circ_0001971 as novel biomarkers for the diagnosis of oral squamous cell carcinoma. Cell Physiol Biochem, 2018, 47(6): 2511-2521.
69. Chen X, Chen RX, Wei WS, et al. PRMT5 circular RNA promotes metastasis of urothelial carcinoma of the bladder through sponging miR-30c to induce epithelial-mesenchymal transition. Clin Cancer Res, 2018, 24(24): 6319-6330.
70. Shao Y, Li J, Lu R, et al. Global circular RNA expression profile of human gastric cancer and its clinical significance. Cancer Med, 2017, 6(6): 1173-1180.
71. Dong WW, Li HM, Qing XR, et al. Identification and characterization of human testis derived circular RNAs and their existence in seminal plasma. Sci Rep, 2016, 6: 39080.