中国普外基础与临床杂志

中国普外基础与临床杂志

分泌 EphrinAl-Caspase-3 的 T 淋巴细胞抑制乳腺癌细胞生长的动物研究

查看全文

目的探讨分泌 EphrinAl-Caspase-3 的 T 淋巴细胞体内移植对乳腺癌生长的抑制作用。方法采用 6 周龄的 BALB/c 裸鼠接种乳腺肿瘤细胞构建裸鼠乳腺癌模型后,按随机数字表法随机分为 3 组:PBS 组瘤内注射 10 μL PBS,阴性对照组瘤内注射 1×106 个未感染腺病毒的 T 淋巴细胞,感染组瘤内注射 1×106 个 EphrinAl-Caspase3-T 淋巴细胞,每隔 3 天用游标卡尺测量肿瘤的大小(0、3、6、9、12 及 15 d)至实验结束。处死裸鼠取其肿瘤组织检测组织中 EphrinAl-Caspase-3 的含量,并行病理学检查观察表达绿色荧光蛋白的 T 淋巴细胞的存在,以及 Caspase-3 和 Ki-67 阳性细胞的表达情况。结果第 0 天和第 3 天时,3 组裸鼠的肿瘤体积比较差异均无统计学意义(P>0.05);第 6 天及以后,感染组和 PBS 组/阴性对照组比较差异均有统计学意义(P<0.05),但各时点 PBS 组和阴性对照组的肿瘤体积比较差异均无统计学意义(P>0.05)。感染组的肿瘤组织中可见散在的绿色荧光蛋白标记的 EphrinAl-Caspase-3-T 淋巴细胞的存在,而 PBS 组和阴性对照组均没有检测到绿色荧光蛋白的存在。与 PBS 组和阴性对照组比较,感染组的肿瘤细胞中,Caspase-3 阳性细胞比例较高,Ki-67 阳性细胞比例较低。感染组在第 3 天就可以检测出 EphrinAl-Caspase-3 的表达,第 6 天时达到高峰,随后分泌量逐渐降低;PBS 组和阴性对照组各时点均没有检测到 EphrinAl-Caspase-3 的表达。结论EphrinAl-Caspase-3 能明显抑制体内乳腺癌细胞的生长,促进凋亡。

ObjectiveTo investigate the inhibitory effect of T lymphocyte transplantation of EphrinAl-Caspase-3 on the growth of breast cancer.MethodsSix-week-old BALB/c nude mice were used to inoculate breast cancer cells to construct a nude mouse model of breast cancer. They were randomly divided into 3 groups according to random number table: PBS group received intratumoral injection of 10 μL PBS, and negative control group received intratumoral injection of 1×106 T lymphocytes uninfected with adenovirus, 1×106 EphrinAl-Caspase3-T lymphocytes were injected intratumorally into the infected group, and the tumors size (0, 3, 6, 9, 12 and 15 d) were measured with vernier calipers every 3 days until end of experiment. The content of EphrinAl-Caspase-3 in the tissues of the nude mice was measured. The presence of T lymphocytes expressing green fluorescent protein and the ratio of Caspase-3-positive and Ki-67-positive cell were observed by pathological examination.ResultsOn the day 0 and day 3, there were no significant difference in tumor volume between the 3 groups (P>0.05). On the 6th day and later, the difference between the infected group and the PBS group/negative control group were statistically significant (P<0.05), but there were no significant difference in tumor volume between the PBS group and negative control group at each time point (P>0.05). The presence of scattered green fluorescent protein-labeled EphrinAl-Caspase-3-T lymphocytes was observed in the tumor tissues of the infected group, while the presence of green fluorescent protein were not detected in the PBS group and the negative control group. In the infected cells, ratio of Caspase-3-positive cell was up-regulated and ratio of Ki-67-positive cell was down-regulated. The expression of EphrinAl-Caspase-3 could be detected on the 3rd day in the infected group, and at the peak on the 6-day, then the amount of secretion gradually decreased. The expression of EphrinAl-Caspase-3 were not detected in the PBS group and the negative control group at each time point.ConclusionEphrinAl-Caspase-3 can significantly inhibit the growth of breast cancer cells and promote apoptosis.

关键词: 乳腺癌; EphrinAl-Caspase-3; 淋巴细胞; 动物实验

Key words: breast cancer; EphrinAl-Caspase-3; T lymphocytes; animal experiment

引用本文: 赵斌, 张覃, 李庄, 张本斯, 李艳娇, 黄煜. 分泌 EphrinAl-Caspase-3 的 T 淋巴细胞抑制乳腺癌细胞生长的动物研究. 中国普外基础与临床杂志, 2019, 26(3): 288-293. doi: 10.7507/1007-9424.201811027 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Allred DC, Wu Y, Mao S, et al. Ductal carcinoma in situ and the emergence of diversity during breast cancer evolution. Clin Cancer Res, 2008, 14(2): 370-378.
2. Shipitsin M, Campbell LL, Argani P, et al. Molecular definition of breast tumor heterogeneity. Cancer Cell, 2007, 11(3): 259-273.
3. Allred DC, Harvey JM, Berardo M, et al. Prognostic and predictive factors in breast cancer by immunohistochemical analysis. Mod Pathol, 1998, 11(2): 155-168.
4. Sørlie T, Perou CM, Tibshirani R, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci U S A, 2001, 98(19): 10869-10874.
5. Prat A, Parker JS, Karginova O, et al. Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res, 2010, 12(5): R68.
6. Parker JS, Mullins M, Cheang MC, et al. Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol, 2009, 27(8): 1160-1167.
7. Perou CM, Sørlie T, Eisen MB, et al. Molecular portraits of human breast tumours. Nature, 2000, 406(6797): 747-752.
8. Siegel RL, Miller KD, Jemal A. Cancer statistics, 2016. CA Cancer J Clin, 2016, 66(1): 7-30.
9. Holen I, Speirs V, Morrissey B, et al. In vivo models in breast cancer research: progress, challenges and future directions. Dis Model Mech, 2017, 10(4): 359-371.
10. Eifel P, Axelson JA, Costa J, et al. National Institutes of Health Consensus Development Conference Statement: adjuvant therapy for breast cancer, November 1-3, 2000. J Natl Cancer Inst, 2001, 93(13): 979-989.
11. Early Breast Cancer Trialists’ Collaborative Group (EBCTCG). Effects of chemotherapy and hormonal therapy for early breast cancer on recurrence and 15-year survival: an overview of the randomised trials. Lancet, 2005, 365(9472): 1687-1717.
12. Bird BR, Swain SM. Cardiac toxicity in breast cancer survivors: review of potential cardiac problems. Clin Cancer Res, 2008, 14(1): 14-24.
13. Bovelli D, Plataniotis G, Roila F, et al. Cardiotoxicity of chemotherapeutic agents and radiotherapy-related heart disease: ESMO Clinical Practice Guidelines. Ann Oncol, 2010, 21 Suppl 5: v277-v282.
14. Yeh ET, Bickford CL. Cardiovascular complications of cancer therapy: incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol, 2009, 53(24): 2231-2247.
15. Bowles EJ, Wellman R, Feigelson HS, et al. Risk of heart failure in breast cancer patients after anthracycline and trastuzumab treatment: a retrospective cohort study. J Natl Cancer Inst, 2012, 104(17): 1293-1305.
16. Romond EH, Perez EA, Bryant J, et al. Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med, 2005, 353(16): 1673-1684.
17. de Azambuja E, Cardoso F, Meirsman L, et al. The new generation of breast cancer clinical trials: the right drug for the right target. Bull Cancer, 2008, 95(3): 352-357.
18. Figueroa-Magalhães MC, Jelovac D, Connolly R, et al. Treatment of HER2-positive breast cancer. Breast, 2014, 23(2): 128-136.
19. Force T, Krause DS, Van Etten RA. Molecular mechanisms of cardiotoxicity of tyrosine kinase inhibition. Nat Rev Cancer, 2007, 7(5): 332-344.
20. Brantley-Sieders D, Schmidt S, Parker M, et al. Eph receptor tyrosine kinases in tumor and tumor microenvironment. Curr Pharm Des, 2004, 10(27): 3431-3442.
21. Surawska H, Ma PC, Salgia R. The role of ephrins and Eph receptors in cancer. Cytokine Growth Factor Rev, 2004, 15(6): 419-433.
22. Zelinski DP, Zantek ND, Stewart JC, et al. EphA2 overexpression causes tumorigenesis of mammary epithelial cells. Cancer Res, 2001, 61(5): 2301-2306.
23. Nakopoulou L, Alexandrou P, Stefanaki K, et al. Immuno- histochemical expression of caspase-3 as an adverse indicator of the clinical outcome in human breast cancer. Pathobiology, 2001, 69(5): 266-273.
24. Pu X, Storr SJ, Zhang Y, et al. Caspase-3 and caspase-8 expression in breast cancer: caspase-3 is associated with survival. Apoptosis, 2017, 22(3): 357-368.
25. Soliman NA, Yussif SM. Ki-67 as a prognostic marker according to breast cancer molecular subtype. Cancer Biol Med, 2016, 13(4): 496-504.