中国普外基础与临床杂志

中国普外基础与临床杂志

肝癌 SMMC-7721 细胞中 FOXQ1 基因沉默对奥沙利铂的化疗增敏作用

查看全文

目的 观察沉默肝癌 SMMC-7721 细胞中叉头框 Q1(FOXQ1)基因的表达对奥沙利铂敏感性的影响。 方法 ① 构建靶向 FOXQ1 基因的 shRNA 重组慢病毒载体及阴性对照重组慢病毒载体,再筛选最佳的干扰序列。② 将细胞分为 3 组:干扰组(转染 FOXQ1-shRNA-3 重组慢病毒载体)、阴性对照组(转染阴性对照重组慢病毒载体)及空白对照组(未做任何处理)。检测 3 组细胞中 FOXQ1 mRNA 及其蛋白的表达。③ 将另一部分细胞分为干扰组、阴性对照组、空白对照组、干扰+奥沙利铂、阴性对照+奥沙利铂组与空白对照+奥沙利铂组,给予相应处理,培养 48 h 后检测细胞凋亡率。细胞活力实验方法同细胞凋亡率实验。 结果 ① shRNA-FOXQ1-3 组细胞中 FOXQ1 mRNA 及其蛋白的表达水平均高于 shRNA-FOXQ1-1 组和 shRNA-FOXQ1-2 组(P<0.05),为最佳干扰序列。② 干扰组细胞中 FOXQ1 mRNA 及其蛋白的表达水平均低于阴性对照组和空白对照组(P<0.05),但阴性对照组和空白对照组比较差异均无统计学意义(P>0.05)。③ 不管是在加入 OXA 条件下,还是在未加入 OXA 条件下,干扰组细胞的凋亡率均高于阴性对照组与空白对照组(P<0.05),细胞活力均低于阴性对照组和空白对照组(P<0.05),但同条件下阴性对照组和空白对照组的细胞凋亡率和细胞活力比较差异无统计学意义(P>0.05);在干扰组、阴性对照组和空白对照组中,均是加入 OXA 组的细胞凋亡率高于未加入 OXA 组(P<0.05),加入 OXA 组的细胞活力低于未加入 OXA 组(P<0.05)。 结论 沉默 FOXQ1 基因的表达能够有效诱导 SMMC-7721 细胞的凋亡,并增加其对奥沙利铂的化疗敏感性。

Objective To observe the effect of forkhead box Q1(FOXQ1) short hairpin RNA (shRNA) on sensitivity of oxaliplatin chemotherapy in hepatpcellular carcinoma cell line SMMC-7721. Methods ① Complementary shRNA oligonucleotides targeting the FOXQ1 gene and negative control-shRNA were designed and inserted into lentiviral vector. shRNA lentivirus vectors were transfected into SMMC-7721 cells and the lentivirus vector with the best silencing effect was screened. ② SMMC-7721 cells were divided into interference group (SMMC-7721 cells were transfected with FOXQ1-shRNA-3), negative control group (SMMC-7721 cells were transfected with negative control-shRNA), and blank control group (SMMC-7721 cells did not received any treatment), and the expressions of FOXQ1 mRNA and its protein were detected at 72 hours after transfection. ③ SMMC-7721 cells were divided into interference group, negative control group, blank control group, interference +oxaliplatin group, negative control+oxaliplatin group, and blank control+oxaliplatin group, apoptosis rates and viability of SMMC-7721 cells were detected at 48 hours after transfection. Results ① The expressions of FOXQ1 mRNA and its protein in SMMC-7721 cells of the shRNA-FOXQ1-3 group were both higher than those of the shRNA-FOXQ1-1 group and shRNA-FOXQ1-2 group (P<0.05), so the shRNA-FOXQ1-3 was the best lentiviral vector. ② Compared with the negative control group and the blank control group, the expressions of FOXQ1 mRNA and its protein of the interference group were both lower (P<0.05), but there was no significant difference between the negative control group and the blank control group (P>0.05).③ Whether added oxaliplatin or not, compared with the negative control group and the blank control group, the apoptosis rate of interference group were higher (P<0.05), but the viability of the interference group was higher (P<0.05), and there was no significant difference between the negative control group and the blank control group under the same condition (P>0.05). The apoptosis rate of groups (including interference group, the negative control group, and the blank control group) which added oxaliplatin was higher than those groups didn’t add oxaliplatin (P<0.05), but viability of groups (including interference group, the negative control group, and the blank control group) which added oxaliplatin was lower than those groups didn’t add oxaliplatin (P<0.05). Conclusion Down-regulation of expression of FOXQ1 by shRNA in hepatocellular carcinoma cell line SMMC-7721 can effectively induce apoptosis and increase sensitivity of SMMC-7721 cells to oxaliplatin.

关键词: 肝癌; 叉头框 Q1; 奥沙利铂; 增敏作用

Key words: hepatocellular carcinoma; forkhead box Q1; oxaliplatin; sensitizing effect

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Zhu Q, Li N, Zeng X, et al. Hepatocellular carcinoma in a large medical center of China over a 10-year period: evolving therapeutic option and improving survival. Oncotarget, 2015, 6(6): 4440-4450.
2. Yang P, Markowitz GJ, Wang XF. The hepatitis B virus-associated tumor microenvironment in hepatocellular carcinoma. Natl Sci Rev, 2014, 1(3): 396-412.
3. Zhang L, Ge C, Zhao F, et al. NRBP2 Overexpression Increases the Chemosensitivity of Hepatocellular Carcinoma Cells via Akt Signaling. Cancer Res, 2016, 76(23): 7059-7071.
4. Katoh M, Igarashi M, Fukuda H, et al. Cancer genetics and genomics of human FOX family genes. Cancer Lett, 2013, 328(2): 198-206.
5. Huang W, Chen Z, Shang X, et al. Sox12, a direct target of FoxQ1, promotes hepatocellular carcinoma metastasis through up-regulating Twist1 and FGFBP1. Hepatology, 2015, 61(6): 1920-1933.
6. 邓大炜, 孔宪炳, 王平, 等. FOXQ1 在肝癌中的临床意义及其对 SMMC-7721 细胞体外血管形成的影响. 中国生物化学与分子生物学报, 2015, 31(4): 422-428.
7. 李建水, 邓大炜, 曾丽娟. FOXQ1 促进肝癌细胞系 SMMC-7721 细胞的增殖. 中国生物化学与分子生物学报, 2016, 32(4): 446-451.
8. 王城, 吴斌, 严舒, 等. 沉默 FOXQ1 基因抑制肝细胞癌 SMMC-7721 细胞迁移侵袭能力. 中国肿瘤生物治疗杂志, 2017, 24(1): 48-52.
9. 段峰, 王茂强, 刘凤永, 等. 肝动脉化疗栓塞联合索拉非尼治疗肝细胞癌合并肺转移的临床观察. 中华肿瘤杂志, 2009, 31(9):716-718.
10. Varga M, Valsamis A, Matia I, et al. Transarterial chemoembolization in hepatocellular carcinoma. Rozhl Chir, 2009, 88(8): 434-438.
11. Asghar U, Meyer T. Are there opportunities for chemotherapy in the treatment of hepatocellular cancer? J Hepatol, 2012, 56(3): 686-695.
12. Louafi S, Boige V, Ducreux M, et al. Gemcitabine plus oxaliplatin (GEMOX) in patients with advanced hepatocellular carcinoma (HCC): results of a phase II study. Cancer, 2007, 109(7): 1384-1390.
13. Kim HY, Park JW. Clinical trials of combined molecular targeted therapy and locoregional therapy in hepatocellular carcinoma: past, present, and future. Liver Cancer, 2014, 3(1): 9-17.
14. Hsu CH, Shen YC, Shao YY, et al. Sorafenib in advanced hepatocellular carcinoma: current status and future perspectives. J Hepatocell Carcinoma, 2014, 1: 85-99.
15. Kim DY. Can metronomic chemotherapy be an alternative to sorafenib in advanced hepatocellular carcinoma? Clin Mol Hepatol, 2017, 23(2): 123-124.
16. Becker G, Soezgen T, Olschewski M, et al. Combined TACE and PEI for palliative treatment of unresectable hepatocellular carcinoma. World J Gastroenterol, 2005, 11(39): 6104-6109.
17. Banfi A, Podestà M, Fazzuoli L, et al. High-dose chemotherapy shows a dose-dependent toxicity to bone marrow osteoprogenitors: a mechanism for post-bone marrow transplantation osteopenia. Cancer, 2001, 92(9): 2419-2428.
18. Kato J, Kuwabara Y, Mitani M, et al. Expression of survivin in esophageal cancer: correlation with the prognosis and response to chemotherapy. Int J Cancer, 2001, 95(2): 92-95.
19. Nielsen K, Scheffer HJ, Volders JH, et al. Radiofrequency ablation to improve survival after conversion chemotherapy for colorectal liver metastases. World J Surg, 2016, 40(8): 1951-1958.
20. Xia L, Huang W, Tian D, et al. Forkhead box Q1 promotes hepatocellular carcinoma metastasis by transactivating ZEB2 and VersicanV1 expression. Hepatology, 2014, 59(3): 958-973.
21. Peng X, Luo Z, Kang Q, et al. FOXQ1 mediates the crosstalk between TGF-β and Wnt signaling pathways in the progression of colorectal cancer. Cancer Biol Ther, 2015, 16(7): 1099-1109.
22. Yonemori K, Seki N, Idichi T, et al. The microRNA expression signature of pancreatic ductal adenocarcinoma by RNA sequencing: anti-tumour functions of the microRNA-216 cluster. Oncotarget, 2017, 8(41): 70097-70115.
23. Bao B, Azmi AS, Aboukameel A, et al. Pancreatic cancer stem-like cells display aggressive behavior mediated via activation of FoxQ1. J Biol Chem, 2014, 289(21): 14520-14533.
24. Kaneda H, Arao T, Tanaka K, et al. FOXQ1 is overexpressed in colorectal cancer and enhances tumorigenicity and tumor growth. Cancer Res, 2010, 70(5): 2053-2063.