中国普外基础与临床杂志

中国普外基础与临床杂志

亚甲蓝+牛磺胆酸钠联合逆行胰胆管注射法制备重症急性胰腺炎大鼠模型

查看全文

目的 研究亚甲蓝+牛磺胆酸钠联合逆行胰胆管注射法制备重症急性胰腺炎(SAP)大鼠模型的应用价值。 方法 选取 SPF 级 SD 大鼠 90 只,雌雄各半,采用拆信封法随机分为正常对照组(NC 组)、牛磺胆酸钠组(ST 组)及亚甲蓝+牛磺胆酸钠组(MBST 组),分别经胰胆管逆行注射 0.9% 生理盐水、牛磺胆酸钠+DAPI 荧光剂及亚甲蓝+牛磺胆酸钠+DAPI 荧光剂的混合液,分别从穿刺成功率、胰腺组织坏死程度、胰腺病变范围及胆、肠漏发生率 4 个方面比较各组间的差异。 结果 ① 穿刺成功率在 MBST 组明显高于 ST 组(P=0.003)和 NC 组(P=0.006),ST 组和 NC 组比较差异无统计学意义(P=0.782)。② 在 MBST 组和 ST 组的胰腺坏死程度随着时间的延长越来越重(P<0.050);在 12、24 和 48 h 3 个时间点时 MBST 组胰腺坏死程度均较 ST 组严重(P<0.050)。③ MBST 组的胰腺病变范围评分明显高于 ST 组(P=0.003)。④ MBST 组的胆、肠漏发生率明显低于 NC 组(P=0.008)和 ST 组(P=0.004)。 结论 亚甲蓝+牛磺胆酸钠联合逆行胰胆管注射法制备 SAP 大鼠模型可以提高胰胆管穿刺成功率、加重胰腺组织的坏死程度、扩大胰腺组织的病变范围、降低胆、肠漏率,可为 SAP 基础研究提供较为稳定的动物模型。

Objective To study value of severe acute pancreatitis (SAP) rat model induced by retrograde pancreatic duct infusion of methylene blue in combination with sodium taurocholate. Methods The SPF 90 SD rats, 45 male rats and 45 female rats of them, were randomly divided into normal control group (NC group), sodium taurocholate group (ST group) and methylene blue in combination with sodium taurocholate group (MBST group), which were retrogradely infused with the 0.9% normal saline, sodium taurocholate plus DAPI, and methylene blue plus sodium taurocholate plus DAPI respectively into the pancreatic duct. The success rate of puncture, degree necrosis of pancreas tissue, range of pancreatic lesions, and the incidence of bile or intestinal leakage were compared among the three groups. Results ① The success rate of puncture in the MBST group was significantly higher than that in the ST group (P=0.003) and the NC group (P=0.006), which had no significant difference between the ST group and the NC group (P=0.782). ② The necrosis degree of pancreas tissues in the MBST group and ST group became more and more severe with the extension of time (P<0.050), which in the MBST group was more serious than that in the ST group (P<0.050). ③ The range of pancreatic lesions in the MBST group was significantly higher than that in the ST group (P=0.003). ④ The incidence of bile or intestinal leakage in the MBST group was significantly lower than that in the NC group (P=0.008) and the ST group (P=0.004). Conclusions Retrograde pancreatic duct infusion of methylene blue in combination with sodium taurocholate can improve success rate of puncture, aggravate necrosis degree of pancreatic tissue, increase lesion scope of pancreatic tissue, and reduce rate of bile or intestinal leakage, which can provide a stable animal model for basic research of SAP.

关键词: 重症急性胰腺炎; 动物模型; 牛黄胆酸钠; 亚甲蓝

Key words: severe acute pancreatitis; animal model; sodium taurocholate; methylene blue

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Aho HJ, Koskensalo SM, Nevalainen TJ. Experimental pancreatitis in the rat. Sodium taurocholate-induced acute haemorrhagic pancreatitis. Scand J Gastroenterol, 1980, 15(4): 411-416.
2. Schmidt J, Rattner DW, Lewandrowski K, et al. A better model of acute pancreatitis for evaluating therapy. Ann Surg, 1992, 215(1): 44-56.
3. Hung WY, Abreu Lanfranco O. Contemporary review of drug-induced pancreatitis: A different perspective. World J Gastrointest Pathophysiol, 2014, 5(4): 405-415.
4. Zerem E. Treatment of severe acute pancreatitis and its complications. World J Gastroenterol, 2014, 20(38): 13879-13892.
5. Pavlidis P, Crichton S, Lemmich Smith J, et al. Improved outcome of severe acute pancreatitis in the intensive care unit. Crit Care Res Pract, 2013, 2013: 897107.
6. 张凌, 卢山, 陆慧敏, 等. 重症急性胰腺炎术后腹腔出血的危险因素分析及诊治经验. 中国普外基础与临床杂志, 2018, 25(5): 565-571.
7. 邓文宏, 郭闻一, 孙荣泽, 等. 花姜酮通过 NF-κB 保护重症急性胰腺炎大鼠胰腺损伤. 中国普外基础与临床杂志, 2016, 23(1): 28-32.
8. 黄伯儒, 赵海平, 胡文秀. 髓鞘碱性蛋白、TNF-α 和 IL-6 在实验性大鼠胰性脑病中的水平变化及相关性研究. 中国普外基础与临床杂志, 2015, 22(7): 816-821.
9. Buchwalow I, Schnekenburger J, Atiakshin D, et al. Oxidative stress and NO generation in the rat pancreatitis induced by pancreatic duct ligation. Acta Histochem, 2017, 119(3): 252-256.
10. Yubero S, Manso MA, Ramudo L, et al. Dexamethasone down-regulates the inflammatory mediators but fails to reduce the tissue injury in the lung of acute pancreatitis rat models. Pulm Pharmacol Ther, 2012, 25(4): 319-324.
11. Wang X, Zhou G, Liu C, et al. Acanthopanax versus 3-methyladenine ameliorates sodium taurocholate-induced severe acute pancreatitis by inhibiting the autophagic pathway in rats. Acanthopanax Mediators Inflamm, 2016, 2016: 8369704.
12. Du D, Jin T, Zhang R, et al. Phenolic compounds isolated from Dioscorea zingiberensis protect against pancreatic acinar cells necrosis induced by sodium taurocholate. Bioorg Med Chem Lett, 2017, 27(6): 1467-1470.
13. Cheng L, Qiao Z, Xu C, et al. Midkine is overexpressed in acute pancreatitis and promotes the pancreatic recovery in L-arginine-induced acute pancreatitis in mice. J Gastroenterol Hepatol, 2017, 32(6): 1265-1272.
14. Kaur J, Sidhu S, Chopra K, et al. Protective effect of Mimosa pudica L. in an L-arginine model of acute necrotising pancreatitis in rats. J Nat Med, 2016, 70(3): 423-434.
15. Aziz NM, Kamel MY, Rifaai RA. Effects of hemin, a heme oxygenase-1 inducer in L-arginine-induced acute pancreatitis and associated lung injury in adult male albino rats. Endocr Regul, 2017, 51(1): 20-30.
16. Frick TW. The role of calcium in acute pancreatitis. Surgery, 2012, 152(3 Suppl 1): S157-S163.
17. Yin T, Peeters R, Liu Y, et al. Visualization, quantification and characterization of caerulein-induced acute pancreatitis in rats by 3.0T clinical MRI, biochemistry and histomorphology. Theranostics, 2017, 7(2): 285-294.
18. Liu Y, Zhou D, Long FW, et al. Resolvin D1 protects against inflammation in experimental acute pancreatitis and associated lung injury. Am J Physiol Gastrointest Liver Physiol, 2016, 310(5): G303-G309.
19. Pan Y, Li Y, Gao L, et al. Development of a novel model of hypertriglyceridemic acute pancreatitis in mice. Sci Rep, 2017, 7: 40799.
20. Warzecha Z, Sendur P, Ceranowicz P, et al. Protective effect of pretreatment with acenocoumarol in cerulein-induced acute pancreatitis. Int J Mol Sci, 2016, 17(10). pii: E1709.
21. Lombardi B, Estes LW, Longnecker DS. Acute hemorrhagic pancreatitis (massive necrosis) with fat necrosis induced in mice by DL-ethionine fed with a choline-deficient diet. Am J Pathol, 1975, 79(3): 465-480.
22. Akita S, Kubota K, Kobayashi A, et al. Role of bone marrow cells in the development of pancreatic fibrosis in a rat model of pancreatitis induced by a choline-deficient/ethionine-supplemented diet. Biochem Biophys Res Commun, 2012, 420(4): 743-749.
23. Grönroos JM, Aho HJ, Nevalainen TJ. Effects of chronic alcohol intake and secretory stimulation on sodium taurocholate-induced pancreatic necrosis in the rat. J Surg Res, 1989, 47(4): 360-364.
24. van Baal MC, van Rens MJ, Geven CB, et al. Association between probiotics and enteral nutrition in an experimental acute pancreatitis model in rats. Pancreatology, 2014, 14(6): 470-477.
25. 李洋, 谢靖, 张超杰. 亚甲蓝染色法在乳腺癌前哨淋巴结活检中的应用价值. 中国社区医师, 2016, 32(6): 151-152.