中国普外基础与临床杂志

中国普外基础与临床杂志

microRNA 在急性胰腺炎中的研究进展

查看全文

目的 总结 microRNA 在急性胰腺炎中的研究进展。 方法 通过阅读近几年国内外的文献,对近年来 microRNA 在急性胰腺炎中的研究进展进行归纳总结。 结果 近几年的研究发现,microRNA 可以作为急性胰腺炎的生物标志物,以预测并且判定急性胰腺炎的发生、发展、并发症发生等,还可以调控急性胰腺炎的程序性死亡,在调控急性胰腺炎的炎症发展、并发症发生等中都发挥着重要作用,并且可以作为急性胰腺炎的治疗靶点。 结论 microRNA 在急性胰腺炎的发生和发展中扮演着十分重要的角色,研究 microRNA 在急性胰腺炎中的机制对于急性胰腺炎的治疗、预防等有一定的帮助。

Objective To summarize the research progress of microRNA in acute pancreatitis. Methods By reading the domestic and international literatures published in recent years, to summarize the research progress of microRNA in acute pancreatitis. Results In recent years, researches had found that microRNA could be used as a biomarker for acute pancreatitis to predict and determine the occurrence, development, and complications of acute pancreatitis. microRNA could regulate the programmed death of acute pancreatitis, and played an important role in the development of inflammation and complications, it also could be used as a therapeutic target for acute pancreatitis. Conclusions microRNA plays an important role in the development of acute pancreatitis. Researching the mechanism of microRNA in acute pancreatitis is helpful for the treatment and prevention of acute pancreatitis.

关键词: 急性胰腺炎; microRNA; 生物标志物; 程序性死亡; 综述

Key words: acute pancreatitis; microRNA; biomarker; programmed cell death; review

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. van Dijk SM, Hallensleben NDL, van Santvoort HC, et al. Acute pancreatitis: recent advances through randomised trials. Gut, 2017, 66(11): 2024-2032.
2. Kinns H. Classification of acute pancreatitis-2012: revision of the Atlanta classification and definitions by international concensus. Ann Clin Biochemistry An International Journal of Biochemistry Laboratory Medicine, 2013, 50(2): 182.
3. 王兴鹏, 李兆申, 袁耀宗, 等. 中国急性胰腺炎诊治指南(2013, 上海). 中华胰腺病杂志, 2013, 13(2): 73-78.
4. Vege SS, Gardner TB, Chari ST, et al. Low mortality and high morbidity in severe acute pancreatitis without organ failure: a case for revising the Atlanta classification to include " moderately severe acute pancreatitis”. Am J Gastroenterol, 2009, 104(3): 710-715.
5. da Silva S, Rocha M, Pinto-de-Sousa J. Acute pancreatitis etiology investigation: a workup algorithm proposal. GE Port J Gastroenterol, 2017, 24(3): 129-136.
6. Bai Y, Liu Y, Jia L, et al. Severe acute pancreatitis in China: etiology and mortality in 1976 patients. Pancreas, 2007, 35(3): 232-237.
7. Su Y, Wu H, Pavlosky A, et al. Regulatory non-coding RNA: new instruments in the orchestration of cell death. Cell Death Dis, 2016, 7(8): e2333.
8. Gao B, Wang D, Sun W, et al. Differentially expressed microRNA identification and target gene function analysis in starvation-induced autophagy of AR42J pancreatic acinar cells. Mol Med Rep, 2016, 14(1): 590-598.
9. Ambros V. MicroRNAs and developmental timing. Curr Opin Genet Dev, 2011, 21(4): 511-517.
10. Rupaimoole R, Slack FJ. MicroRNA therapeutics: towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov, 2017, 16(3): 203-222.
11. Zheng J, Huang X, Tan W, et al. Pancreatic cancer risk variant in LINC00673 creates a miR-1231 binding site and interferes with PTPN11 degradation. Nat Genet, 2016, 48(7): 747-757.
12. Lu P, Wang F, Wu J, et al. Elevated serum miR-7, miR-9, miR-122, and miR-141 are noninvasive biomarkers of acute pancreatitis. Dis Markers, 2017, 2017: 7293459-7293466.
13. Liu P, Xia L, Zhang WL, et al. Identification of serum microRNAs as diagnostic and prognostic biomarkers for acute pancreatitis. Pancreatology, 2014, 14(3): 159-166.
14. Zhang Y, Yan L, Han W. Elevated level of miR-551b-5p is associated with inflammation and disease progression in patients with severe acute pancreatitis. Ther Apher Dial, 2018,[Epub ahead of print].
15. Zhang XX, Deng LH, Chen WW, et al. Circulating microRNA 216 as a marker for the early identification of severe acute pancreatitis. Am J Med Sci, 2017, 353(2): 178-186.
16. 孙涛. 急性胰腺炎血浆 miRNAs 表达及 miR-494 调节胰腺腺泡细胞凋亡的机制研究. 上海: 第二军医大学, 2016.
17. Shi N, Deng L, Chen W, et al. Is microRNA-127 a novel biomarker for acute pancreatitis with lung injury? Dis Markers, 2017, 2017: 1204295-1204304.
18. Lu XG, Kang X, Zhan LB, et al. Circulating miRNAs as biomarkers for severe acute pancreatitis associated with acute lung injury. World J Gastroenterol, 2017, 23(41): 7440-7449.
19. Su Z, Yang Z, Xu Y, et al. MicroRNAs in apoptosis, autophagy and necroptosis. Oncotarget, 2015, 6(11): 8474-8490.
20. 李广博, 张淑君, 姚婕, 等. 程序性细胞死亡机制的研究进展. 现代生物医学进展, 2017, 17(35): 6992-6996.
21. Engelberg-Kulka H, Amitai S, Kolodkin-Gal I, et al. Bacterial programmed cell death and multicellular behavior in bacteria. PLoS Genet, 2006, 2(10): 1518-1526.
22. Booth DM, Murphy JA, Mukherjee R, et al. Reactive oxygen species induced by bile acid induce apoptosis and protect against necrosis in pancreatic acinar cells. Gastroenterology, 2011, 140(7): 2116-2125.
23. Nucera S, Giustacchini A, Boccalatte F, et al. miRNA-126 orchestrates an oncogenic program in B cell precursor acute lymphoblastic leukemia. Cancer Cell, 2016, 29(6): 905-921.
24. Qin T, Fu Q, Pan YF, et al. Expressions of miR-22 and miR-135a in acute pancreatitis. J Huazhong Univ Sci Technolog Med Sci, 2014, 34(2): 225-233.
25. Fu Q, Qin T, Chen L, et al. miR-29a up-regulation in AR42J cells contributes to apoptosis via targeting TNFRSF1A gene. World J Gastroenterol, 2016, 22(20): 4881-4890.
26. Buchan JR, Parker R. Molecular biology. The two faces of miRNA. Science, 2007, 318(5858): 1877-1878.
27. Peter ME. Programmed cell death: Apoptosis meets necrosis. Nature, 2011, 471(7338): 310-312.
28. Galluzzi L, Kepp O, Krautwald S, et al. Molecular mechanisms of regulated necrosis. Semin Cell Dev Biol, 2014, 35: 24-32.
29. Zhang DW, Shao J, Lin J, et al. RIP3, an energy metabolism regulator that switches TNF-induced cell death from apoptosis to necrosis. Science, 2009, 325(5938): 332-336.
30. Ma X, Conklin DJ, Li F, et al. The oncogenic microRNA miR-21 promotes regulated necrosis in mice. Nat Commun, 2015, 6: 7151-7163.
31. Hu MX, Zhang HW, Fu Q, et al. Functional role of MicroRNA-19b in acinar cell necrosis in acute necrotizing pancreatitis. J Huazhong Univ Sci Technolog Med Sci, 2016, 36(2): 221-225.
32. Frankel LB, Di Malta C, Wen J, et al. A non-conserved miRNA regulates lysosomal function and impacts on a human lysosomal storage disorder. Nat Commun, 2014, 5: 5840-5850.
33. Kang R, Zhang Q, Hou W, et al. Intracellular Hmgb1 inhibits inflammatory nucleosome release and limits acute pancreatitis in mice. Gastroenterology, 2014, 146(4): 1097-1107.
34. Tang D, Kang R, Coyne CB, et al. PAMPs and DAMPs: signal 0 s that spur autophagy and immunity. Immunol Rev, 2012, 249(1): 158-175.
35. Zhu H, Huang L, Zhu S, et al. Regulation of autophagy by systemic admission of microRNA-141 to target HMGB1 in l-arginine-induced acute pancreatitis in vivo. Pancreatology, 2016, 16(3): 337-346.
36. Yu C, Yu X, Zhu HW, et al. Expression pattern of HMGB1 and its association with autophagy in acute necrotizing pancreatitis. Mol Med Rep, 2016, 14(6): 5507-5513.
37. Wang D, Tang M, Zong P, et al. MiRNA-155 regulates the Th17/Treg ratio by targeting SOCS1 in severe acute pancreatitis. Front Physiol, 2018, 9: 686-695.
38. Qian D, Wei G, Xu C, et al. Bone marrow-derived mesenchymal stem cells (BMSCs) repair acute necrotized pancreatitis by secreting microRNA-9 to target the NF-κB1/p50 gene in rats. Sci Rep, 2017, 7(1): 581-597.
39. Zhang J, Ning X, Cui W, et al. Transforming growth factor (TGF)-β-induced microRNA-216a promotes acute pancreatitis via Akt and TGF-β pathway in mice. Dig Dis Sci, 2015, 60(1): 127-135.
40. Tian R, Wang RL, Xie H, et al. Overexpressed miRNA-155 dysregulates intestinal epithelial apical junctional complex in severe acute pancreatitis. World J Gastroenterol, 2013, 19(45): 8282-8291.
41. Wu XM, Ji KQ, Wang HY, et al. MicroRNA-339-3p alleviates inflammation and edema and suppresses pulmonary microvascular endothelial cell apoptosis in mice with severe acute pancreatitis-associated acute lung injury by regulating Anxa3 via the Akt/mTOR signaling pathway. J Cell Biochem, 2018, 119(8): 6704-6714.
42. Song Z, Huang Y, Liu C, et al. miR-352 participates in the regulation of trypsinogen activation in pancreatic acinar cells by influencing the function of autophagic lysosomes. Oncotarget, 2018, 9(13): 10868-10879.
43. Ye X, Ding J, Chen Y, et al. Adenovirus-mediated artificial miRNA targeting fibrinogen-like protein 2 attenuates the severity of acute pancreatitis in mice. Biosci Rep, 2017, 37(6): BSR20170964.