中国普外基础与临床杂志

中国普外基础与临床杂志

CO2 气腹对急性腹膜炎大鼠细菌生长及移位的影响

查看全文

目的 研究不同气腹压力及作用时间对急性腹膜炎大鼠细菌生长繁殖和细菌移位的影响。 方法 于 60 只 SD 大鼠的腹腔内注射大肠杆菌标准混悬液,建立大鼠急性细菌性腹膜炎模型。本实验给予 3 类气腹压力:15 mm Hg(1 mm Hg=0.133 kPa)为高气腹压,5 mm Hg 为低气腹压,空白对照大鼠未建立气腹;给予 2 类处理时间:1 h 和 3 h。将 60 只 SD 大鼠模型采用随机数字表法分为 6 组(每组 10 只),分别接受不同气腹压力和时间的组合处理。之后抽取腹水进行细菌定量培养和菌种分离鉴定,收集门静脉血进行血培养和内毒素含量测定。 结果 ① 腹水细菌含量:析因设计的方差分析结果表明,不同气腹压力组的细菌含量不同(F=9.02,P=0.020),不同时间组的细菌含量也不同(F=8.47,P=0.003),且不同气腹压力组中时间的影响不同(F=8.07,P=0.020)。② 血培养结果:6 组大鼠都发生了细菌移位。3 类气腹压力下 1 h 和 3 h 组之间的血培养阳性率类似(P>0.05),2 个时点下高气腹组的血培养阳性率均高于未建立气腹组(P<0.05)。③ 门静脉血的内毒素含量:不同气腹压力组的内毒素含量不同(F=14.70,P<0.01),高气腹组的内毒素含量高于低气腹组(P=0.018)和未建立气腹组(P<0.01),且低气腹组的内毒素含量高于未建立气腹组(P=0.005);不同时间组的内毒素含量也不同(F=148.90,P<0.01),3 h 组的门静脉血内毒素含量高于 1 h 组;不同气腹压力组中时间的影响的差异不大(F=0.14,P=0.874)。 结论 CO2 气腹促进了急性腹膜炎大鼠的肠道内毒素和细菌移位,并且随压力和时间的增加而严重。

Objective To study the effects of different carbon dioxide pneumoperitoneum pressure and time on abdominal cavity infection bacteria of peritonitis in rats, including bacteria growth and bacterial translocation. Methods Sixty Sprague Dawley rats were injected with Eseherichia coli into the abdominal cavity to establish models of intra-abdominal infection. To give 3 types of pneumoperitoneum pressure for the experimental group: 15 mm Hg (1 mm Hg=0.133 kPa) for high pressure group, 5 mm Hg for low pressure group, and blank control group for no-pneumoperitoneum. To give 2 types of experimental period: 1 h and 3 h. These 60 Sprague Dawley rats were randomly divided intomoperi 6 groups by random number table. They were treated by different pneumoperitoneum pressure and time. All rats were killed at the end of the carbon-dioxide pneumo-peritoneum experiment. Peritoneal lavage fluids and portal vein blood were taken for microbiological examinations and culture. The endotoxin content in portal vein blood was detected too. Results ① Bacteria content: bacteria counts of different pneumoperitoneum pressure groups were obviously different (F=9.02, P=0.020), bacteria counts of different experimental period groups were obviously different (F=8.47, P=0.003), the effect of time was different in different pneumoperitoneum pressure groups (F=8.07, P=0.020). ② Bacterial translocation: Bacterial translocation occurred in all 6 groups. Blood culture positive rates were similar between 1 h group and 3 h group at 3 types of pneumoperitoneum pressure groups (P>0.05). The positive rate of blood culture in high pneumoperitoneum group was significantly higher compared with the no-pneumoperitoneum group (P<0.05). ③ The endotoxin content: the endotoxin content of different pneumoperitoneum pressure groups were obviously different (F=14.70, P<0.01), the endotoxin content in plasma increased obviously in high pressure group compared with low pressure group (P=0.018) and no-pneumoperitoneum group (P<0.01), the endotoxin content in plasma increased obviously in low pressure group compared with no-pneumoperitoneum group (P=0.005). The endotoxin content of different experimental period groups were obviously different (F=148.90, P<0.01), the endotoxin content in plasma increased obviously in 3 h group compared with 1 h group. There were no significant difference in the effect of time with different pneumoperitoneum pressure groups (F=0.14, P=0.874). Conclusion CO2pneumoperitoneum promoted intestinal bacterial endotoxin and bacterial translocation in peritonitis of rats, which increased with the pressure and time.

关键词: 急性腹膜炎; CO2 气腹; 内毒素; 细菌移位; 大鼠

Key words: acute peritonitis; CO2 pneumoperitoneum; endotoxin; bacterial translocation; rat

引用本文: 欧梦川, 杨显金, 罗云, 王崇树. CO2 气腹对急性腹膜炎大鼠细菌生长及移位的影响 . 中国普外基础与临床杂志, 2018, 25(11): 1313-1317. doi: 10.7507/1007-9424.201806075 复制

登录后 ,请手动点击刷新查看全文内容。 没有账号,
登录后 ,请手动点击刷新查看图表内容。 没有账号,
1. Kos M, Kuebler JF, Jesch NK, et al. Carbon dioxide differentially affects the cytokine release of macrophage subpopulations exclusively via alteration of extracellular pH. Surg Endosc, 2006, 20(4): 570-576.
2. Suematsu T, Hirabayashi Y, Shiraishi N, et al. Morphology of the murine peritoneum after pneumoperitoneum vs laparotomy. Surg Endosc, 2001, 15(9): 954-958.
3. Chatzimavroudis G, Pavlidis TE, Koutelidakis I, et al. CO(2) pneumoperitoneum prolongs survival in an animal model of peritonitis compared to laparotomy. J Surg Res, 2009, 152(1): 69-75.
4. Chawla BK, Teitelbaum DH. Profound systemic inflammatory response syndrome following non-emergent intestinal surgery in children. J Pediatr Surg, 2013, 48(9): 1936-1940.
5. Peng H, Zhang J, Cai C, et al. The influence of carbon dioxide pneumoperitoneum on systemic inflammatory response syndrome and bacterial translocation in patients with bacterial peritonitis caused by acute appendicitis. Surg Innov, 2018, 25(1): 7-15.
6. 杜慧竟, 石继春, 李江姣, 等. 细菌悬液两种计数方法的比较. 中国医药导报, 2016, 13(6): 146-149.
7. 黎介寿. 加强对肠屏障功能障碍的研究. 中国临床营养杂志, 2003, 11(4): 243-245.
8. Steinberg SM. Bacterial translocation: what it is and what it is not. Am J Surg, 2003, 186(3): 301-305.
9. 李琴, 刘立新. 肠黏膜屏障与肠源性内毒素血症的关系研究进展. 中华消化病与影像杂志: 电子版, 2012, 2(4): 291-294.
10. Menconi MJ, Salzman AL, Unno N, et al. Acidosis induces hyperpermeability in Caco-2BBe cultured intestinal epithelial monolayers. Am J Physiol, 1997, 272(5 Pt 1): G1007-G1021.
11. 程君涛, 肖光夏, 冯智, 等. 腹内高压致肠黏膜屏障损伤的实验研究. 中华烧伤杂志, 2006, 22(2): 33-37.
12. 赵晓琴, 陈英, 邝晓聪, 等. 腹内高压对肠黏膜屏障功能损伤的影响. 世界华人消化杂志, 2013, 21(34): 3790-3798.
13. Tuğ T, Ozbas S, Tekeli A, et al. Does pneumoperitoneum cause bacterial translocation? J Laparoendosc Adv Surg Tech A, 1998, 8(6): 401-407.
14. Strier A, Kravarusic D, Coran AG, et al. The effect of elevated intra-abdominal pressure on TLR4 signaling in intestinal mucosa and on intestinal bacterial translocation in a rat. J Laparoendosc Adv Surg Tech A, 2017, 27(2): 211-216.
15. 李锟, 吴承堂, 张军花, 等. 严重腹腔感染早期肠黏膜病理损害的实验观察. 南方医科大学学报, 2006, 26(2): 202-204.
16. Vaishnavi C. Translocation of gut flora and its role in sepsis. Indian J Med Microbiol, 2013, 31(4): 334-342.
17. Li Y, Ren J, Wu X, et al. Intra-abdominal infection combined with intra-abdominal hypertension aggravates the intestinal mucosal barrier dysfunction. Biosci Rep, 2018, 38(1): 1-10.
18. Piñero-Fernandez S, Chimerel C, Keyser UF, et al. Indole transport across Escherichia coli membranes. J Bacteriol, 2011, 193(8): 1793-1798.
19. Martínez H, Buhse T, Rivera M, et al. Effect of the volume-to-surface ratio of cultures on Escherichia coli growth: an experimental and theoretical analysis. Curr Microbiol, 2012, 65(1): 60-65.
20. Merlin C, Masters M, McAteer S, et al. Why is carbonic anhydrase essential to Escherichia coli? J Bacteriol, 2003, 185(21): 6415-6424.
21. Dixon NM, Kell DB. The inhibition by CO2 of the growth and metabolism of micro-organisms. J Appl Bacteriol, 1989, 67(2): 109-136.
22. Sare M, Yesilada O, Gürel M, et al. Effects of CO2 insufflation on bacterial growth in rats with Escherichia coli-induced experimental peritonitis. Surg Laparosc Endosc, 1997, 7(1): 38-41.
23. Sare M, Demirkiran AE, Tastekin N, et al. Effects of laparoscopic models on anaerobic bacterial growth with bacteroides fragilis in experimentally induced peritonitis. J Laparoendosc Adv Surg Tech A, 2003, 13(3): 175-179.
24. Matsumoto T, Tsuboi S, Dolgor B, et al. The effect of gases in the intraperitoneal space on cytokine response and bacterial translocation in a rat model. Surg Endosc, 2001, 15(1): 80-84.
25. Casaroli AA, Mimica LM, Fontes B, et al. The effects of pneumoperitoneum and controlled ventilation on peritoneal lymphatic bacterial clearance: experimental results in rats. Clinics (Sao Paulo), 2011, 66(9): 1621-1625.