中国普外基础与临床杂志

中国普外基础与临床杂志

植物调节人类健康及疾病的新机制—植物微小 RNA 跨物种调控

查看全文

目的 探讨植物微小 RNA(microRNA,miRNA)跨物种调控对调节人类健康及疾病的新机制。 方法 对近年来有关植物 miRNA 跨物种调控人类健康及疾病新机制的相关文献进行综述。 结果 植物化学物质在维持人类的健康及调节疾病中起到了重要作用,植物 miRNA 跨物种调控同样起到重要作用,其可能的调控机制为成熟植物 miRNA 通过胃肠道途径完整进入动物体内,其首先通过胃肠道后再进入小肠分泌的微泡中,经过动物的循环系统靶向运往器官或组织处,通过胃肠道途径的植物 miRNA 与靶 mRNA 高度匹配进行结合并发挥其生物学调控作用。 结论 尽管已有研究证实植物 miRNA 可以跨胃肠道调控动物特定生物学功能,为植物参与调控人类健康及疾病发生、发展的新机制提供了实验依据,但是食物中的 miRNA 是否受加工、运输、储存方式的影响以及影响程度仍需深入挖掘;同时动物内存在的植物 miRNA 含量很低,不同动物体内的植物 miRNA 的种类也不尽相同。虽然上述问题仍未解决,但是相信随着研究的不断进展,掌握 miRNA 跨物种调控的机制会对预防人类疾病和保持机体健康有巨大帮助。

Objective To explore new mechanisms of cross-species regulation of plant microRNA (miRNA) to regulate human health and disease. Method The recently relevant literatures on the new mechanisms of cross-species regulation of the plant miRNA for human the health and disease were reviewed. Results The phytochemicals played an important role in the maintaining human health and regulating diseases, and the plant miRNA cross-species regulation also played an important role in it. Its possible regulatory mechanism was that the mature plant miRNA came into the animal body through the gastrointestinal tract. It firstly passed through the gastrointestinal tract and then came into the microvesicles secreted by the small intestine. It was targeted to the organ or tissue through passing of the animal circulatory system. The plant miRNA passing through the gastrointestinal tract was highly matched with the target mRNA to perform its biological regulatory role. Conclusions Although studies have confirmed that plant miRNA can regulate animal specific biological functions across gastrointestinal tract and it provides an experimental basis for plants to participate in new mechanisms for regulating human health and disease occurrence and development, whether or not miRNA in food is affected by way it is processed, transported, stored, and extent to which it is affected, remains to be explored. At the same time, content of plant miRNA in animals is very low, and types of plant miRNA in different animals are not same. Although the above issues remain unresolved, it is believed that as research progresses, mastering mechanism of miRNA cross-species regulation will greatly help preventing human diseases and maintaining health of body.

关键词: 植物化学物质; 微小 RNA; 跨物种调控; 胃肠道途径

Key words: phytochemical; microRNA; cross-kingdom regulation; gastrointestinal pathway

登录后 ,请手动点击刷新查看全文内容。 没有账号,
1. 郭甜甜, 刘聪敏, 高肇妤, 等. 蔬菜水果中植物化学物质防治肺癌作用及机制研究现状. 中国肺癌杂志, 2017, 20(12): 841-846.
2. Chang SK, Alasalvar C, Shahidi F. Superfruits: Phytochemicals, antioxidant efficacies, and health effects—A comprehensive review. Crit Rev Food Sci Nutr, 2018: 1-25.
3. Howes MJ, Simmonds MS. The role of phytochemicals as micronutrients in health and disease. Curr Opin Clin Nutr Metab Care, 2014, 17(6): 558-566.
4. Zhang L, Hou D, Chen X, et al. Exogenous plant MIR168a specifically targets mammalian LDLRAP1: evidence of cross-kingdom regulation by microRNA. Cell Res, 2012, 22(1): 107-126.
5. LaMonte G, Philip N, Reardon J, et al. Translocation of sickle cell erythrocyte microRNAs into Plasmodium falciparum inhibits parasite translation and contributes to malaria resistance. Cell Host Microbe, 2012, 12(2): 187-199.
6. Alam MN, Almoyad M, Huq F. Polyphenols in colorectal cancer: current state of knowledge including clinical trials and molecular mechanism of action. Biomed Res Int, 2018, 2018: 4154185.
7. Khan M, Maryam A, Zhang H, et al. Killing cancer with platycodin D through multiple mechanisms. J Cell Mol Med, 2016, 20(3): 389-402.
8. Wang J, Hu S, Nie S, et al. Reviews on mechanisms of in vitro antioxidant activity of polysaccharides. Oxid Med Cell Longev, 2016, 2016: 5692852.
9. Ji X, Peng Q, Wang M. Anti-colon-cancer effects of polysaccharides: A mini-review of the mechanisms. Int J Biol Macromol, 2018, 114: 1127-1133.
10. 李国东, 金俊超, 张津宁, 等. 大肠可利用越橘成分抑制人结直肠癌细胞生长的机制研究. 中华结直肠疾病电子杂志, 2015, 4(2): 144-150.
11. 刘明. 结直肠癌多酚类植物化学预防剂的研究进展. 中华结直肠疾病电子杂志, 2014, 3(5): 8-11.
12. 李安国, 贺石林, 邓常清. 食用植物及其植物化学物质对慢性疾病的化学预防概述. 湖南中医药大学学报, 2018, 38(2): 228-234.
13. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004, 116(2): 281-297.
14. He L, Hannon GJ. MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet, 2004, 5(7): 522-531.
15. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005, 120(1): 15-20.
16. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature, 2005, 435(7043): 834-838.
17. Xia T, Li J, Cheng H, et al. Small-molecule regulators of microRNAs in biomedicine. Drug Dev Res, 2015, 76(7): 375-381.
18. Mitchell PS, Parkin RK, Kroh EM, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U S A, 2008, 105(30): 10513-10518.
19. Chen X, Ba Y, Ma L, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res, 2008, 18(10): 997-1006.
20. Kourembanas S. Exosomes: vehicles of intercellular signaling, biomarkers, and vectors of cell therapy. Annu Rev Physiol, 2015, 77: 13-27.
21. Yu B, Yang Z, Li J, et al. Methylation as a crucial step in plant microRNA biogenesis. Science, 2005, 307(5711): 932-935.
22. Chen X. MicroRNA biogenesis and function in plants. FEBS Lett, 2005, 579(26): 5923-5931.
23. Duraisingh MT, Lodish HF. Sickle cell microRNAs inhibit the malaria parasite. Cell Host Microbe, 2012, 12(2): 127-128.
24. Liang H, Zhang S, Fu Z, et al. Effective detection and quantification of dietetically absorbed plant microRNAs in human plasma. J Nutr Biochem, 2015, 26(5): 505-512.
25. Liang H, Zen K, Zhang J, et al. New roles for microRNAs in cross-species communication. RNA Biol, 2013, 10(3): 367-370.
26. Chin AR, Fong MY, Somlo G, et al. Cross-kingdom inhibition of breast cancer growth by plant miR159. Cell Res, 2016, 26(2): 217-228.
27. Jayachandran B, Hussain M, Asgari S. An insect trypsin-like serine protease as a target of microRNA: utilization of microRNA mimics and inhibitors by oral feeding. Insect Biochem Mol Biol, 2013, 43(4): 398-406.
28. Zhu K, Liu M, Fu Z, et al. Plant microRNAs in larval food regulate honeybee caste development. PLoS Genet, 2017, 13(8): e1006946.
29. Wolschin F, Mutti NS, Amdam GV. Insulin receptor substrate influences female caste development in honeybees. Biol Lett, 2011, 7(1): 112-115.
30. Du T, Zamore PD. microPrimer: the biogenesis and function of microRNA. Development, 2005, 132(21): 4645-4652.
31. 汪劼. 闯入动物王国的植物 miRNA. 生命的化学, 2016, 36(3): 404-408.
32. Zhou Z, Li X, Liu J, et al. Honeysuckle-encoded atypical microRNA2911 directly targets influenza A viruses. Cell Res, 2015, 25(1): 39-49.
33. Shahid S, Kim G, Johnson NR, et al. MicroRNAs from the parasitic plant Cuscuta campestris target host messenger RNAs. Nature, 2018, 553(7686): 82-85.
34. Bartel DP. MicroRNAs: target recognition and regulatory functions. Cell, 2009, 136(2): 215-233.
35. Scarpa ES, Ninfali P. Phytochemicals as innovative therapeutic tools against cancer stem cells. Int J Mol Sci, 2015, 16(7): 15727-15742.